
An Evaluation of Container Security Vulnerability Detection
Tools

Omar Javed
Faculty of Informatics, Università dell Svizzera italiana

(USI), Switzerland

Salman Toor
Scientific Computing Division, Department of Information

Technology, Uppsala University, Sweden

ABSTRACT
Container is a lightweight virtualization technology which pack-
ages an application, its dependencies and an operating system (OS)
to run as an isolated unit. However, the pressing concern with the
use of containers is its susceptibility to security attacks. Conse-
quently, a number of container scanning tools are available for
detecting container security vulnerabilities. Therefore, in this ex-
perience report, we investigate the quality of existing container
scanning tools by considering two metrics that reflect coverage and
accuracy. We analyze popular public container images hosted on
DockerHub using different container scanning tools (i.e., Clair, An-
chore, andMicroscanner). Our findings show that existing container
scanning tools do not detect application package vulnerabilities.
Furthermore, we find that existing tools do not have high accuracy.

CCS CONCEPTS
• :; • Security and privacy; • Software and application secu-
rity.;

KEYWORDS
Additional Key Words and Phrases: Security Tools, Software Vul-
nerabilities, Empirical Studies, Docker Containers, Mining Software
Repositories

ACM Reference Format:
Omar Javed and Salman Toor. 2021. An Evaluation of Container Security
Vulnerability Detection Tools. In 2021 5th International Conference on Cloud
and Big Data Computing (ICCBDC) (ICCBDC 2021), August 13–15, 2021,
Liverpool, United Kingdom. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3481646.3481661

1 INTRODUCTION
A cloud-based infrastructure alleviates the challenge of managing
and maintaining application services across large dis- tributed com-
puting environments [1][2]. However, the need for faster deploy-
ment, better performance, and continuous delivery of application
services has led to the introduction of containers [3].

Containerization is a virtualization approach that sits on top
of a physical machine and shares its host OS kernel and services
[4]. The benefits of using containers over traditional virtualization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCBDC 2021, August 13–15, 2021, Liverpool, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9040-8/21/08. . . $15.00
https://doi.org/10.1145/3481646.3481661

approaches has lead to its growing adoption in the industry by
40% in the year 2020 [5]. Moreover, it is expected that 47% of the
information technology service providers are planning to deploy
containers in their environment [6].

One of the leading container technology is Docker that has more
than 6 billion downloads [7], and over a million images on Dock-
erHub [8]. However, Docker containers are susceptible to security
threats [9]. For example, in July 2017 it was reported that an attacker
hosted several malicious Docker (container) images on DockerHub.
Before these images were taken down, they were downloaded more
than 5 million times, which resulted in 545 Monero digital coins
being mined (approximately $900 000) [10].

To identify security issues, Docker Inc. has a scanning service
[11], which was formerly known as ProjectNautilus [12]. The ser-
vice provides automated monitoring, validation, and detection of
vulnerabilities for images hosted on DockerHub. However, the ser-
vice is currently not available for all Docker images (i.e., it does
not scan community images). Hence, it is important to investigate
vulnerabilities in community-based Docker images.

Furthermore, a number of scanning tools are available (e.g., Clair
[13], Anchore [14], and Microscanner [15]), which can analyze
official as well as community images hosted on DockerHub. The
approach employed by these tools is that it collects package infor-
mation (e.g., OS packages), and compares it against a vulnerability
database.

To demonstrate vulnerability issues in both official and commu-
nity images on DockerHub, Rui et al. demonstrated vulnerability
landscape of DockerHub images by analyzing OS packages [9].
However, their study did not explore vulnerabilities detected in the
nonOS package (i.e., main application and dependencies or libraries
packaged in the container).

Since there are several different container scanning tools, it is
important to assess the quality of these tools to better understand
their strengths and weaknesses. Such kind of assessment is impor-
tant to improve the approach being employed by the vulnerability
detection tools. This is because a high quality tool is important for
addressing security issues as it can point to the component (i.e.,
application, library or OS) where the vulnerability exists, which
can be fixed in a timely manner [16].

Therefore, in this experience report, we investigate the effec-
tiveness of existing container scanning tools by con- sidering two
metrics, Detection Coverage and Detection Hit Ratio (DHR) which
reflects the tool’s coverage and accuracy (Section 4). Our method-
ology involves crawling 1000 Docker images on DockerHub and
selected the ones that fulfills popularity, tool support and viability of
our defined analysis (i.e., availability of open-source security tools
which can be used to analyze the code and reproducibility of the
analysis). One of our main criteria is popular Java-based container
applications because Java is one of the most popular programming

95

https://doi.org/10.1145/3481646.3481661
https://doi.org/10.1145/3481646.3481661
https://doi.org/10.1145/3481646.3481661
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3481646.3481661&domain=pdf&date_stamp=2021-11-26

ICCBDC 2021, August 13–15, 2021, Liverpool, United Kingdom Omar Javed and Salman Toor

Figure 1: A typical container scanning approach for package
vulnerability detection

languages (https://pypl.github.io/PYPL.html., which makes it sus-
ceptible to security attacks. For example, a vulnerability related
to remote code execution (CVE-2018-11776) was found in Apache
struts [17]. This has affected many users and developers. It has
been estimated that almost 65% of the Fortune 100 companies use
Apache structs [18]. This makes Java-based container applications
important to study.

Based on this premise, we select real-world Docker images of
Java-based container applications based on their popularity in terms
of download. Furthermore, we analyze popular Docker images to
investigate the following research questions:

RQ1: What are the most vulnerable nonOS packages present in
Java-based container applications and can these vulnerabilities be
easily fixed?

RQ2:What is the detection coverage of the existing container
vulnerability scanning tools?

RQ3:What is the accuracy of vulnerability detection of existing
container scanning tools?

Our study indicate shortcomings in the approach used by the
existing container scanning tools, which we hope researchers and
practitioners will improve in designing new container scanning
tools. In this regard, our study makes the following key contribu-
tions:

We use two metrics for assessing the tools’ quality, which are
the coverage and accuracy of the container scanning tools (Section
4).

We find that the applications packaged in Docker images are
missed by the container scanning approach, making detection cov-
erage of the tools questionable (Section 6.3).

We evaluate the accuracy of existing container scanning tools
and find that tools are missing a significant number of vulnerabili-
ties (Section 6.5).

DatasetWe provide complete information of the detected vul-
nerabilities, along with a list of all analyzed Docker images with its
project information in the dataset [19].

2 BACKGROUND
In this section, we first explain the container scanning approach
employed by the existing tools, followed by a discussion on existing
container vulnerability detection tools and services. Furthermore,
wewill also discuss studies that investigate vulnerabilities in Docker
images.

2.1 Container scanning approach
In a typical container scanning approach, a number of packages
in a container image are scanned by the tool, which analyzes the
package name and its version number. This information is then
compared against a vulnerability database, which contains a list of
entries from publicly known security attacks (or exposures) also
known as Common Exposures and Vulnerabilities (CVE). If the
analyzed package and its version matches the entry in the database,
this is reported as a vulnerability. The scanning approach is shown
in Figure 1.

Based on this idea, several different types of vulnerability as-
sessment tools and services have been provided, such as official
Docker scanner, GitHub security alerts and enterprise service (e.g.,
RedHat Containers). Docker Inc. has a scanning service [11], which
provides monitoring, validation, and identification of vulnerabili-
ties for official container images hosted on DockerHub. However,
the service is currently not available for community-based images.
Similarly, GitHub also provides a service for alerting about vulner-
abilities in the dependencies of a project [20]. However, the service
is relatively young, and is expanding to support multiple languages.

2.2 Docker image analysis
Previous studies have conducted Docker image vulnerability anal-
ysis. Martin et al. [3] provide an assessment based on a literature
survey regarding the exploitation and mitigation of Docker images
from an external attack. However, the study does not assess real-
world Docker images hosted on DockerHub to identify security
vulnerabilities that can potentially be exploited by an attacker.

Wist et al, [21] analyze vulnerability landscape of DockerHub
images to identify most vulnerable type of images and packages.
Moreover, Rui et al. [9] conduct a study on security vulnerabilities
in both official and community images on DockerHub. However, the
study analyzes vulnerabilities that are related to only OS packages,
and the authors do not study the vulnerabilities that are present in
non-OS packages. Furthermore, the evaluation and the analysis is
conducted on only one container scanning tool (i.e., Clair). We, on
the contrary, investigate the effectiveness of the existing container
scanning tools.

3 TOOL SELECTION
Table1 lists different types of Docker container scanning tools.
We explored a number of different container scanning tools from
different sources [27][28][29], and identified around 30 container
scanning tools. Commercial tools are excluded because complete
features of the tools are not available in a trial version. Therefore,
it will not provide an accurate comparison of the tool.

Furthermore, we assess only those container scanning tools,
which detect package vulnerabilities. This is because such vulnera-
bilities are of high concern when deploying containers [9]. In Table
1, we highlight (in dark grey color) tools whose functionality is
to detect vulnerabilities in OS and/or non-OS packages. From the
table, we can see that out of 8 tools, only Anchore identify vulner-
abilities in non-OS packages, which shows that there is a lack of
container scanning tools that detect vulnerabilities in application
and its dependencies packaged in the container.

96

https://pypl.github.io/PYPL.html

An Evaluation of Container Security Vulnerability Detection Tools ICCBDC 2021, August 13–15, 2021, Liverpool, United Kingdom

Table 1: List of Docker scanning tools

Name Functionality

Clair [13] Identifies OS vulnerabilities in Docker images
Anchore [14] Identifies OS and nonOS vulnerabilities in Docker images
Microscanner [15] Identifies OS vulnerabilities in Docker images
AppArmor [22] Prevernt access to filesystem and network
Calico [23] Virtual networking security detection
Cilium [24] HTTP-layer and network layer security detection
Open Policy Agent [25] Security policy enforcement
Notary [26] Verify the integrity and origin of the content

Figure 2: Methodology for collecting and analyzing Docker images. Steps for data collection and metric analysis are marked
in red box with numbers. The description of these steps are provided in section5

4 METRIC SELECTION FOR ASSESSING TOOL
QUALITY

Our study uses two metric to assess the quality of container scan-
ning tools. We define and explain the reason for selecting each of
the metric as follows:

Detection Coverage: The lack of container scanning approach
analyzing non-OS package of the container is the main reason
for selecting this metric. There are three different categories of
packages that are contained in a container

— application, dependencies (or library), and OS packages. We
investigate whether the existing container scanning tool (i.e., An-
chore) which analyzes both nonOS and OS package is able to detect
vulnerabilities in application, libraries and OS packages. Hence, this
factor indicates tool coverage.

Detection Hit Ratio (DHR): This factor demonstrates the
tool’s effectiveness in terms of vulnerability detection, i.e., the num-
ber of vulnerabilities successfully detected by a tool from a given
set of vulnerabilities. The higher the detection, the better is its effec-
tiveness. Therefore, this factor indicates tool accuracy. Furthermore,
the important aspect of computing DHR is the number of detection
misses, therefore, we explain our procedure for finding detection
miss for each tool in Section 6.4. We compute DHR by using the

following formula:

DHR =
Detection Hit

(Detection Hit + Detection Miss)
where

Detection Hit is the number of vulnerabilities detected.
Detection Miss is the number of vulnerabilities missed.

5 METHODOLOGY
We present our methodology to automatically find a set of popular
Docker images. Our methodology is based on collecting images
from DockerHub and their corresponding projects on GitHub. We
refer to projects as GitHub repository of the Docker image. The
images are analyzed by container scanning tools, and an image’s
corresponding project code is used for code inspection by using
SpotBugs [30] for finding security bugs in the application code.

We first query DockerHub API to find a set of popular public
(i.e., community-based) Docker images (1 in figure 2). In order to
find the corresponding image source, we query build information1
of the image, which provides the corresponding project’s GitHub
link. We then query GitHub API (2 in figure 2) to select only Java
projects. To detect vulnerabilities, we analyze the set of Docker
images using container scanning tools such as Clair, Anchore, and
1https://hub.docker.com/v2/repositories/\protect\T1\textdollar\protect\T1\
textbraceleftname\protect\T1\textbraceright/autobuild/

97

https://hub.docker.com/v2/repositories/\protect \T1\textdollar \protect \T1\textbraceleft name\protect \T1\textbraceright /autobuild/
https://hub.docker.com/v2/repositories/\protect \T1\textdollar \protect \T1\textbraceleft name\protect \T1\textbraceright /autobuild/

ICCBDC 2021, August 13–15, 2021, Liverpool, United Kingdom Omar Javed and Salman Toor

Table 2: Severity level ranked by number of detected vulnerabilities in non-OS packages

Severity level Number of Detected Vulnerabilities

Medium 10 080
High 3 316
Low 1 137

Microscanner. We refer to this phase as “Image analyzer", which
downloads (i.e., pull) the image from DockerHub (see 3 in Figure
2). We use a security plugin of SpotBugs (a static code analyzer)
to detect vulnerabilities in the application code (i.e., non-OS) of
the Docker image (6 in Figure 2). We demonstrate the reliability of
ground truth information of vulnerabilities in the application code
in section 6.3. Finally, we evaluate the tools based on two metrics
detection coverage and DHR. (7 in Figure 2).

6 EVALUATION
The analysis of this study has been conducted on a community cloud
with Ubuntu Linux 16.04.4 LTS operating system. Furthermore, the
configuration of the virtual machine is 4x 2.2 GHz vCPUs, 8 GB
of RAM. In our evaluation, we will begin by analyzing non-OS
package vulnerabilities in order to evaluate detection coverage.
Secondly, wewill compare three tools and investigate their accuracy
by computing their DHR.

6.1 Identifying vulnerabilities in non-OS
packages

According to a report, 80% to 90% of applications use OSS library’s
components [31]. Therefore, we scan Docker images to detect non-
OS package vulnerabilities (i.e., OSS libraries used by the container-
based application). We find that only Anchore can analyze non-OS
packages. To detect non-OS packages used by the container-based
application, we selected “non-os” option during image scan by
Anchore. This will exclude other type of vulnerabilities such as
vulnerabilities from OS package. Clair and Microscanner do not
have non-OS package vulnerability feeds.

While crawling DockerHub images, we search for the image’s
most recent tag name2. The identification of tag is necessary be-
cause Anchore fails to analyze an image if the correct tag value is
not provided. Furthermore, we find that not all images use “:latest”
as a tag to indicate its most recent version. Out of 59 images, we
find that 37 images use the “:latest” tag for providing its latest image
version. Therefore, based on the correct tag value, we analyze the
most recent version of 59 Docker images to detect vulnerabilities
in non-OS packages.

Table 2 shows different severity levels for the vulnerabilities
detected in non-OS packages. We find in total 14 533 vulnerabilities
in 800 packages. Out of 14 533, 1 137 are low severity level vulnera-
bilities, meaning that they do not pose any significant threat and
are not exploitable by an attacker, whereas medium and high vul-
nerabilities can be exploited. Therefore, after filtering low severity
level vulnerabilities, there are still 13 396 (i.e., 10 080 and 3 316)

2https://registry.hub.docker.com/v2/repositories/\protect\T1\textdollar\protect\T1\
textbraceleftimagename\protect\T1\textbraceright/tags/

vulnerabilities left in 795 packages. This shows that high number
of nonOS packages have vulnerabilities that can be exploited by an
attacker. Hence, the presence of 13 396 vulnerabilities make these
Docker images susceptible to threats. These fixed vulnerabilities
were present in 55 (out of 59) Docker images, which are reported
in Table-A (see [19]).

6.2 Most Vulnerable nonOS packages
We provide information about nonOS package vulnerabilities (i.e.,
application and its dependencies packaged in 55 Docker images)
in Table-A (refer to [19]). The column “highest” (in Table) presents
most vulnerabilities detected in a package, whereas the column
“most vulnerable package” represents its corresponding package
name.We can observe that inmost cases one package is themain cul-
prit in contributing to the total number of vulnerabilities detected.
For example, P1 has 128 vulnerabilities detected in 4 packages (or
dependencies), in which 120 different vulnerabilities are detected in
the MySQL package, which represents more than 90% of the totally
detected vulnerabilities in P1. These vulnerabilities in the MySQL
package are because of a Denial of Service (DoS) attack.

Our analysis also shows that the most vulnerable Docker image
is P39, which is affected by 1 085 different vul- nerabilities. Around
50% of different vulnerabilities in P39 is again because of theMySQL
package. We can observe from Table-A that the attack surface on
MySQL packages is high compared to other packages. For example,
P29 has vulnerabilities detected in two packages with 262 differ-
ent vulnerabilities, out of which 261 vulnerabilities are because
of MySQL. On further investigation, we find that most of these
vulnerabilities can be fixed by updating to a new version. From the
table-A, we note that two projects (i.e., P43 and P52) have the same
package and version (i.e. jackson- databind-2.9.8) but different val-
ues. This is because in case of P52 there is only one dependency of
jackson-databind-2.9.8 and in P43 there are multiple libraries which
are also using the same version of jackson-databind. Therefore, we
are calculating accumulated vulnerabilities (‘highest’ column of
table-A) that is being detected in a package. In P55, there are a total
of 6 vulnerabilities from six different packages, each having one
vulnerability. Therefore, ’highest’ column showing vulnerabilities
detected in a package is 1 and we just mentioned one package name
out of the six different packages, e.g., qs-6.2.1. Based on our analysis,
we address our first research question:

RQ1: What are the most vulnerable nonOS packages present in
Java-based container applications on DockerHub and can these vul-
nerabilities be easily fixed?

We identified vulnerabilities in nine nonOS packages in Java-
based container applications on DockerHub. These packages in-
clude mysql, jackson-databind, tomcat, maven, hadoop, gradle, mer-
curial, batik, and queryparser. For brevity we exclude their version

98

https://registry.hub.docker.com/v2/repositories/\protect \T1\textdollar \protect \T1\textbraceleft imagename\protect \T1\textbraceright /tags/
https://registry.hub.docker.com/v2/repositories/\protect \T1\textdollar \protect \T1\textbraceleft imagename\protect \T1\textbraceright /tags/

An Evaluation of Container Security Vulnerability Detection Tools ICCBDC 2021, August 13–15, 2021, Liverpool, United Kingdom

Figure 3: Vulnerabilities detected by code inspection. APP
represents an application package vulnerability found in an
image which was not detected by Anchore.

numbers. Furthermore, we find that jackson-databind, which is used
to provide data binding functionality has vulnerabilities which will
affect 19 out of 55 projects.

By checking National Vulnerability Database (NVD) on the iden-
tified vulnerabilities, we find that only approx. 8% of vulnerabilities
(i.e., 1 039 out of 13 396) do not have fix available. However, major
of reported vulnerabilities have fixes such as updating to a new ver-
sion. Hence, we can answer this question positively by stating that
nonOS package vulnerabilities detected in Java-based container
applications on DockerHub can be easily fixed.

6.3 Identifying application code vulnerabilities
with code inspection

Table-A in [19] shows that that no vulnerability has been detected
in the application package of all the analyzed images (this can be
seen in the “application” column). To detect vulnerabilities with
code inspection, we use SpotBug’s security plugin. We analyze the
code of 59 popular Docker images by compiling and fetching the
project from GitHub. These are the source code of the image.

We find vulnerabilities in application code of 5 Docker image’s
project, as shown in Figure 3. This figure shows a stacked bar
chart with Docker images (i.e., its GitHub project) on y-axis, and
number of detected vulnerabilities on the x-axis. There are in total
19 vulnerabilities detected in different application code of 5 projects.
Based on our analysis, we did not find these 19 vulnerabilities as
false-positives. We provide detailed analysis of vulnerabilities in
our dataset [19].

We provide detail about the vulnerabilities identified in the appli-
cation package which are missed by Anchore. Out of 19 vulnerabil-
ities identified in application package, 16 are because of malicious
SQL statement injection, 2 HTTP Response Splitting, and 1 Cross-
Site Scripting. Therefore, most of the vulnerabilities detected are
due to SQL injection. For SQL related vulnerabilities, developers
create a query by concatenating variables with a string. For exam-
ple; ”Select * FROM customers WHERE name =" + custName. This

makes the code vulnerable to SQL injection, because if an attacker
gets hold of the system, s/he can concatenate malicious data to
the query [32]. To differentiate between each detected vulnera-
bility, we further categorize SQL injection into 2 categories such
as ‘SQL injection-A’ and ‘SQL injection-B’. SQL injection-A repre-
sents vulnerability, which occurs due to “Nonconstant string passed
to execute or addBatch method on an SQL statement”. Similarly,
category B represents “a prepared statement is generated from a
nonconstant String”. We find that P29 contains the highest number
of application code vulnerabilities. It has 15 vulnerabilities of 3
different kinds (i.e., cross-site scripting, SQL injection-A and SQL
injection-B).

Furthermore, we also find a vulnerability in the application code
of Docker image. We refer to this project as APP in Figure 3. Ac-
nhore reported zero vulnerabilities for nonOS package for this
project. The name of the image is terracotta/terracotta-server-oss
(shown as APP in Figure 3), which is an official Terracotta Server
repository having more than 50 000 downloads on DockerHub. This
is being missed by Anchore. The reason for missing out on vulner-
ability is because of lack of container image features (e.g., installed
packages and version). For example, Anchore will fail to detect
vulnerabilities if vulnerable packages are installed using source
code. With these findings, we can now answer our second research
question:

RQ2: What is the detection coverage of the existing container
vulnerability scanning tools?

Our findings from table-A in [19] show that Anchore has feeds
which analyzes nonOS package vulnerabilities do not detect vul-
nerabilities in the application package (even though the container
images selected in our study are quite popular). With code-level
inspection, we identified 19 vulnerabilities in the application pack-
age of 5 different Docker images. Therefore, existing scanning tools
are missing out on vulnerabilities that are present in 8,5% (5 out
of 59) of images in our dataset. Hence, our analysis highlights a
limitation in existing container scanning approach for detection
coverage. Furthermore, existing scanning tool such as Anchore also
passed an image even though a vulnerability is present in app code.

6.4 Finding detection miss for container
scanning tools

In order to compute DHR, we find vulnerabilities detected and
vulnerabilities, which are missed by the tool. We find the number
of detection by scanning images, and filtering the detected vul-
nerabilities based on whether it was fixed or not. For OS package
vulnerability detection, each tool provides information about vul-
nerability status (i.e., fixed or not). Therefore, we use this field to
filter only fixed vulnerabilities. For finding detection miss by con-
tainer scanning tools, we formally describe our procedure. Given
the set of Docker images (i.e., 59 in this study), letCi (where i = 1...n
| n=3 for this study) be a container scanning tool. Each Ci detects
vulnerabilities vi by matching package vulnerability information
from its database. A vulnerability vi consists of fixed and unfixed
elements, and is in the form (image name, package name, package
version, CVE identifier). Let Fi be the filtered set that contains set
of fixed vulnerabilities detected by Ci . Let Ft be the filtered set
that contains total set of fixed vulnerabilities detected by all tools.

99

ICCBDC 2021, August 13–15, 2021, Liverpool, United Kingdom Omar Javed and Salman Toor

Table 3: DHR of container scanning tools

Tools Detection Hits Detection Miss DHR DHR(%)

Clair 7 215 12 798 0,36 36,05
Anchore 13 149 6 864 0,66 65,7
Microscan 2 617 17 396 0,13 13,08

To compute DHR for each tool, we compare Fiof each tool with
Ft . This procedure allows us to find how many vulnerabilities are
detected by each tool.

6.5 Comparing DHR of the tool
We describe DHR as a measurement to understand a tool’s effective-
ness for detecting OS package vulnerabilities. For this measurement,
we collect all fixed vulnerabilities (i.e., confirmed vulnerabilities)
that were reported by all three tools. From this set of vulnerabili-
ties, we then identify how many vulnerabilities are detected (and
missed) by a tool.

Table 3 shows the DHR for each tool. The worst detection ca-
pability among the three tool is that of Microscanner. The DHR
for Microscanner is very low, i.e., only 13,08%. On the other hand,
Anchore shows the best DHR among the three tools which is 65,7%.
While Anchore is the best performing tool, it is still missing 6 864
i.e., ≈34% of OS package vulnerabilities, which are being detected
by Clair and Microscanner.

Based on our findings, we can now answer our second research
question:

RQ3: What is the accuracy of vulnerability detection of existing
container scanning tools?

Based on the metric DHR, we find that Anchore has a better
DHR (65,7%) compared to the other two tools. This is because An-
chore has a frequent vulnerability update mechanism. The anchore-
engine periodically fetches newer version of the vulnerability data,
and if the vulnerability information appears in the database during
the scan, the engine will report the analyzed package having a
vulnerability. Even with the frequent update mechanism, Anchore
still misses ≈34% vulnerabilities making all tools miss considerable
vulnerabilities.

7 CONCLUSION
The use of containers present a security concern for which a number
of container scanning tools have been developed. In this experience
report, we investigate the effectiveness of container scanning tools
based on two metrics which represents coverage, and accuracy.
Our analysis shows that both coverage and detection hit ratios
does not provide encouraging results of the tools. Based on our
experience from this study, we encourage the research community
to focus on improving and developing better container vulnerability
detection tool. In the future, we plan to extend our analysis to
understand vulnerabilities that result due to problems in container
environment.

ACKNOWLEDGMENTS
This research was undertaken as part of the eSSENCE strategic
collaboration for eScience3 id="fn3"> http://essenceofescience.se/
tag/uppsala/ </fn>. We would also like to thank SNIC cloud under
the project number SNIC 2021/18-7 for providing the computational
resources.

REFERENCES
[1] Shruti Chhabra and Veer Sain Dixit. 2015. Cloud Computing: State of the Art and

Security Issues. ACM SIGSOFT Software Engineering Notes (2015), 1–11.
[2] Leonardo Montecchi, Nicola Nostro, Andrea Ceccarelli, Giuseppe Vella, Antonio

Caruso, and Andrea Bondavalli. 2015. Model-based Evaluation of Scalability and
Security Tradeoffs: A Case Study on a Multi-Service Platform. Notes in Theoretical
Computer Science (2015), 113 – 133.

[3] AntonyMartin, Simone Raponi, Théo Combe, and Roberto Di Pietro. 2018. Docker
ecosystem - vulnerability analysis. Computer Communications (2018), 30–43.

[4] David Bernstein. 2014. Containers and Cloud: From LXC to Docker to Kubernetes.
IEEE Cloud Computing (2014), 81–84.

[5] 451research. 2020. Container status.https://451research.com/images/
Marketing/press_releases/Application-container-market-will-reach-2-7bn-in-
2020_final_graphic.pdf?p=job%2FojM67fw2. (Accessed on 10/07/2020).

[6] Diamanti. 2020. Container adoption benchmark survey. (Accessed on 10/10/2020).
[7] Docker blog. 2020. InfraKit, a toolkit for creating and managing declarative,

self-healing infrastructure.https://blog.docker.com/2016/10/introducing- infrakit-
an-open-source-toolkit-for-declarative-infrastructure/. (Accessed on 12/10/2020).

[8] DockerHub. 2020. DockerHub Main page.https://www.docker.com/products/
docker-hub. (Accessed on 12/08/2020).

[9] Rui Shu, Xiaohui Gu, and William Enck. 2017. A study of security vulnerabilities
on DockerHub. Data and Application Security and Privacy (2017), 269–280.

[10] Arstechnica. 2020. Backdoored images downloaded 5 million times fi-
nally removed from DockerHub.https://arstechnica.com/information-
technology/2018/06/backdoored-images-downloaded-5-million-times-finally-
removed-from-docker-hub/. (Accessed on 09/10/2020).

[11] Docker. 2020. Docker Security Scanning.https://beta.docs.docker.com/v17.12/
docker-cloud/builds/image-scan/. (Accessed on 10/10/2020).

[12] Docker blog. 2020. Docker Security Scanning safeguards the container content
lifecycle.https://blog.docker.com/2016/05/docker-security-scanning/. (Accessed
on 05/10/2020).

[13] Clair. 2020. Vulnerability static analysis for containers.https://coreos.com/clair/
docs/latest/. (Accessed on 02/11/2020).

[14] Anchore. 2020. The Open Platform for Container Security and Compliance.https:
//anchore.com/. (Accessed on 15/11/2020).

[15] Aqua’s Microscanner. 2020. Microscanner: New free image vulnerability scanner
for developers.https://www.aquasec.com/news/microscanner- new-free-image-
vulnerability-scanner-for-developers/. (Accessed on 10/04/2020).

[16] Lotfi Ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski, and Achim D.
Brucker. 2017. Time for Addressing Software Security Issues: Prediction Models
and Impacting Factors. Data Science and Engineering (2017), 107–124.

[17] Synposys. 2020. The latest Apache Struts vulnerability.https://www.synopsys.
com/blogs/software-security/cve-2018-11776-apache-struts- vulnerability/. (Ac-
cessed on 09/11/2020).

[18] JAXenter. 2020. Apache Struts threatens remote code execution.https://jaxenter.
com/new-vulnerability-discovered-apache-struts-148646.html. (Accessed on
09/12/2020).

[19] Dataset. 2020. Vulnerability detection.https://www.dropbox.com/sh/
j831hoqzb0fb60u/AADf5mMhFHJEiaUn3i46CYYla?dl=0. (Accessed on
05/12/2020).

[20] GitHub. 2020. Introducing security alerts on GitHub.https://github.blog/2017-11-
16-introducing-security-alerts-on-github/. (Accessed on 10/08/2020).

[21] KatrineWist, Malene Helsem, and Danilo Gligoroski. 2020. Vulnerability Analysis
of 2500 Docker Hub Images. arXiv:2006.02932[cs.CR]

3http://essenceofescience.se/tag/uppsala/<fn

100

http://essenceofescience.se/tag/uppsala/
http://essenceofescience.se/tag/uppsala/
https://451research.com/images/Marketing/press_releases/Application-container-market-will-reach-2-7bn-in-
https://451research.com/images/Marketing/press_releases/Application-container-market-will-reach-2-7bn-in-
https://blog.docker.com/2016/10/introducing-
https://www.docker.com/products/docker-hub
https://www.docker.com/products/docker-hub
https://arstechnica.com/information-
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://blog.docker.com/2016/05/docker-security-scanning/
https://coreos.com/clair/docs/latest/
https://coreos.com/clair/docs/latest/
https://anchore.com/
https://anchore.com/
https://www.aquasec.com/news/microscanner-
https://www.synopsys.com/blogs/software-security/cve-2018-11776-apache-struts-
https://www.synopsys.com/blogs/software-security/cve-2018-11776-apache-struts-
https://jaxenter.com/new-vulnerability-discovered-apache-struts-148646.html
https://jaxenter.com/new-vulnerability-discovered-apache-struts-148646.html
https://www.dropbox.com/sh/j831hoqzb0fb60u/AADf5mMhFHJEiaUn3i46CYYla?dl=0
https://www.dropbox.com/sh/j831hoqzb0fb60u/AADf5mMhFHJEiaUn3i46CYYla?dl=0
https://github.blog/2017-11-16-introducing-security-alerts-on-github/
https://github.blog/2017-11-16-introducing-security-alerts-on-github/
arXiv:2006.02932
http://essenceofescience.se/tag/uppsala/

An Evaluation of Container Security Vulnerability Detection Tools ICCBDC 2021, August 13–15, 2021, Liverpool, United Kingdom

[22] App Armor. 2020. The Linux Kernel documentation.https://www.kernel.org/doc/
html/v4.15/admin-guide/LSM/apparmor.html. (Accessed on 10/04/2020).

[23] Calico. 2020. Project Calico - Secure Networking for the Cloud Native Era.https:
//www.projectcalico.org/. (Accessed on 10/08/2020).

[24] Cilium. 2020. Cilium.https://cilium.io/. (Accessed on 10/08/2020).
[25] Open policy. 2020. Open Policy Agent.https://www.openpolicyagent.org/. (Ac-

cessed on 12/10/2019).
[26] Notary. 2020. Trust over arbitrary collections of data, https://github.com/

theupdateframework/notary. (Accessed on 10/08/2020).
[27] Kubedex. 2020. Container Scanning - kubedex.com.https://kubedex.com/

container-scanning/. (Accessed on 10/04/2020).

[28] Sysdig. 2020. 29 Docker security tools compared.https://sysdig.com/blog/20-
docker-security-tools/. (Accessed on 10/10/2020).

[29] Techbeacon. 2020. Top open-source tools for Docker security.https://
techbeacon.com/security/10-top-open-source-tools-docker-security. (Accessed
on 10/10/2020).

[30] SpotBugs. 2020. Find bugs in Java Programs.https://spotbugs.github.io/. (Accessed
on 12/10/2020).

[31] Snyk. 2020. Snyk - The state of open source security.https://snyk.io/
opensourcesecurity-2019/. (Accessed on 12/07/2020). [28]

[32] Stephen Thomas, Laurie Williams, and Tao Xie. 2009. On automated prepared
statement generation to remove SQL injection vulnerabilities. Information and
Software Technology (2009), 589 – 598.

101

https://www.kernel.org/doc/html/v4.15/admin-guide/LSM/apparmor.html
https://www.kernel.org/doc/html/v4.15/admin-guide/LSM/apparmor.html
https://www.projectcalico.org/
https://www.projectcalico.org/
https://cilium.io/
https://www.openpolicyagent.org/
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://kubedex.com/container-scanning/
https://kubedex.com/container-scanning/
https://sysdig.com/blog/20-docker-security-tools/
https://sysdig.com/blog/20-docker-security-tools/
https://techbeacon.com/security/10-top-open-source-tools-docker-security
https://techbeacon.com/security/10-top-open-source-tools-docker-security
https://spotbugs.github.io/
https://snyk.io/opensourcesecurity-2019/
https://snyk.io/opensourcesecurity-2019/

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Container scanning approach
	2.2 Docker image analysis

	3 TOOL SELECTION
	4 METRIC SELECTION FOR ASSESSING TOOL QUALITY
	5 METHODOLOGY
	6 EVALUATION
	6.1 Identifying vulnerabilities in non-OS packages
	6.2 Most Vulnerable nonOS packages
	6.3 Identifying application code vulnerabilities with code inspection
	6.4 Finding detection miss for container scanning tools
	6.5 Comparing DHR of the tool

	7 CONCLUSION
	Acknowledgments
	References

