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a b s t r a c t

Adding a physical watermarking signal to the control input of a networked control system increases
the detection probability of data deception attacks at the expense of increased control cost. This paper
proposes a parsimonious policy to limit the average number of watermarking events when the attack
is not present, which in turn reduces the control cost. We model the system as a stochastic optimal
control problem and apply dynamic programming to minimize the average detection delay (ADD)
for fixed upper bounds on false alarm rate (FAR) and an average number of watermarking events
(ANW) before the attack. Under practical circumstances, the optimal solution results in a two threshold
policy on the posterior probability of attack, derived from the Shiryaev statistics for sequential change
detection and assuming the change point is a random variable. We derive asymptotically approximate
analytical expressions of ADD and FAR, applying the non-linear renewal theory for non-independent
and identically distributed data. The derived expressions reveal that ADD reduces with the increase
in the Kullback–Leibler divergence (KLD) between the post- and pre-attack distributions of the test
statistics. Therefore, we further design the optimal watermarking that maximizes the KLD for a fixed
increase in the control cost. The relationship between the ANW and the increase in control cost is also
derived. Simulation studies are performed to illustrate and validate the theoretical results.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nowadays, cyber–physical systems (CPS) with embedded soft-
are, processors, sensor network, and other physical components
re getting deployed for advanced healthcare, smart buildings,
mart manufacturing units, intelligent transport systems, defence
urposes, smart grids, etc. Satchidanandan and Kumar (2017).
PS integrate cyber and physical components by exchanging data
ver the wireless network and provide autonomy, reliability,
ccuracy, and real-time control without human involvement (Al-
uliyev, Imamverdiyev, & Sukhostat, 2018; Satchidanandan &
umar, 2017). Along with their numerous advantages, there is
lso a growing concern regarding the safety and security of CPS.
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Due to the use of commodity software and off-the-shelf network-
ing components, unattended operations, and a few other reasons
CPS are vulnerable to adversarial attacks on the cyber or/and
physical layer (Mo, Weerakkody, & Sinopoli, 2015). Cryptography,
firewalls, user authentications, digital watermarking, etc. are al-
ready in place to protect CPS from cyber attacks. However, such
protection mechanisms may not be adequate against physical
attacks. For example, during the Stuxnet attack (Langner, 2011),
attackers issued harmful exogenous control inputs to increase the
pressure of the centrifuges beyond the safety limit at a uranium
enrichment plant in Iran. To remain stealthy during the attack,
attackers also replaced the true observation from the system
with previously recorded data. There are a few other examples,
such as the attack on a sewage system in Australia (Abrams &
Weiss, 2008), the attack on the Davis–Besse nuclear power plant
in Ohio, USA (Cardenas et al., 2009), etc., where cyber protection
schemes failed to prevent or detect the attacks. Attacks on CPS
may cause considerable monetary loss and pose threats to human
safety (Satchidanandan & Kumar, 2017).

Attack strategies for the physical layer of CPS can be broadly
classified into two groups, data deception attacks and denial of
service (DoS) attacks. In data deception attacks, the adversary
feeds the system with false data (Mo et al., 2015; Satchidanandan
& Kumar, 2017). Replay attacks are one kind of data deception
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ttack, where the attacker replaces the true observations with
reviously recorded data to remain stealthy (Mo et al., 2015). In
oS attacks, the attacker’s objective is to disrupt the availability of
ata. The attacker may achieve that by overpowering the wireless
etwork (Salimi, Dey, & Ahlen, 2019). In an attack scenario, the
ttacker’s objective is to remain stealthy as long as possible and
ause maximum damage to the system. The inherent noise and
ncertainties in CPS assist the attacker in achieving such an
bjective. The role of a control system engineer is to detect the
ttack as soon as possible to minimize the damage. In this paper,
e have studied data deception attacks on networked control
ystems (NCS), where the attacker replaces the true observation
ith fake data.

.1. Related work

Researchers are working on different challenges to secure CPS
gainst attacks on the physical layer, such as the study of different
ttack strategies (Chen, Kar, & Moura, 2018; Park, Lee, Shim, Eun,
Johansson, 2019), attack resilient state estimation (Du et al.,

019; Fawzi, Tabuada, & Diggavi, 2014; Forti et al., 2018), attack
etection strategies (Fang, Qi, Cheng, & Zheng, 2020; Ge, Han,
hong, & Zhang, 2019; Ko, Satchidanandan, & Kumar, 2019; Mo,
habukswar, & Sinopoli, 2014; Mo et al., 2015; Mousavinejad,
ang, Han, & Vlacic, 2018; Pasqualetti, Dorfler, & Bullo, 2013;
atchidanandan & Kumar, 2017, 2020), etc. Detection strategies
or the attacks on the physical layer of CPS can be broadly divided
nto two groups, passive and active schemes. Under the passive
ttack detection scheme, the innovation signal from the state es-
imator or the observation signal is subjected to various statistical
ests (Ge et al., 2019; Mousavinejad et al., 2018; Pasqualetti et al.,
013). However, as studied in the literature, passive detection
chemes generally have an unsatisfactory probability of detection
n the presence of noise and uncertainties (Mo & Sinopoli, 2009).
n the other hand, under the active attack detection scheme,
hysical watermarking signals are added to the control inputs,
nd various statistical tests are used to check the authenticity
f the received observations. The physical watermarking scheme
as first introduced in Mo and Sinopoli (2009) to detect replay
ttacks by adding an iid watermarking signal to the control input
nd performing a χ2 test using the innovation signal from the
tate estimator. The method in Mo and Sinopoli (2009) is im-
roved by designing an optimal watermarking signal in Mo et al.
2014). Instead of an iid watermarking scheme, the watermarking
ignal generated from a hidden Markov Model (HMM) is studied
n Mo et al. (2015). A sequential attack detection scheme using
he CUSUM statistics evaluated from the joint distribution of the
dded watermarking and the innovation signal is studied in Naha,
eixeira, Ahlen, and Dey (2022b). Besides the innovation signal,
he observation signal is also used to generate residue signals
or the attack detections (Satchidanandan & Kumar, 2017). In Mo
t al. (2015), Naha et al. (2022b) and Satchidanandan and Kumar
2017), watermarking signals are added to the control inputs for
ll the time instants till the point of attack detection. The addi-
ion of physical watermarking to the control input increases the
robability of attack detection at the expense of increased control
ost (Mo et al., 2015). The relation between the increase in the lin-
ar quadratic Gaussian control cost, ∆LQG, and the watermarking
ignal variance is studied in Mo et al. (2015). Since the attack is
less frequent event, adding the watermarking signal during the
ormal operation for a long time can increase the total control
ost significantly (Fang et al., 2020) and unnecessarily. In the
urrent paper, we have studied an evidence-based watermarking
olicy to reduce the increase of control cost before an attack, and,
t the same time, achieve satisfactory detection performance.
Researchers are exploring diverse approaches to reduce the

ncrease in the control cost due to the added watermarking and
2

maintain satisfactory detection performance. In one approach,
the authors have added the watermarking periodically to the
control inputs and kept a balance between the improvement in
the control cost and the increase in the detection delay (Fang
et al., 2020). Another approach is to add watermarking directly
to the observations (Ferrari & Teixeira, 2017; Trapiello, Rotondo,
Sanchez, & Puig, 2019; Ye, Zhang, & Guo, 2019). In this ap-
proach, the authenticity of the observations is first examined at
the receiving end, and then the watermarking signal is filtered
out before using the observations in the controller. Since the
watermarking signal is filtered out, the control cost does not
increase. Different kinds of watermarking signals are used in
this context, such as sinusoidal (Ferrari & Teixeira, 2017), time-
varying sinusoidal (Sánchez et al., 2019), random noise (Ye et al.,
2019), multiplicative to the observations (Trapiello et al., 2019),
etc. However, these methods may fail in the scenario, where
the attacker hijacks the sensor node and feeds the fake data
before the addition of the watermarking. In general, the physical
watermarking-based methods targeting to reduce the increased
control cost or more traditional always present watermarking-
based methods use batch processing of data, i.e., innovation signal
or observation signal. Therefore, those methods do not address
the problem of the quickest attack detection. However, we know
that early detection of attacks is of paramount importance for CPS
to reduce the amount of damage. Therefore, in this paper, we
studied the problem of the quickest detection of attacks which
uses watermarking parsimoniously to reduce the loss in control
performance prior to an attack. The literature on the quickest
detection of a change point by sequential analysis of data dates
back several decades. A brief review on the quickest change
detection techniques is provided in the following paragraph.

The quickest change detection methods can be classified into
two broad groups depending upon the assumption of the model
of the change point (Tartakovsky, Nikiforov, & Basseville, 2014).
In one approach, which is also called the minimax approach,
the change point is modelled as deterministic but unknown.
The cumulative sum (CUSUM) technique is one of such minimax
approaches, which was first introduced by Lorden (Lorden et al.,
1971). In the other approach, the Bayesian approach, the change
point is modelled as a random variable (RV) with some prior
distribution. The Bayesian change point detection technique was
first introduced by Shiryaev (1963). The original Shiryaev rule
was proposed for the data with different iid distributions, before
and after the change point. Finding an optional detection rule for
the general non-iid data is difficult (Fuh & Tartakovsky, 2019).
In Yakir (1994), an optimal detection rule is developed for homo-
geneous finite-state Markov chains. A slightly different approach
is followed in Tartakovsky (2017) and Tartakovsky and Veeravalli
(2005), where the authors proved that the Shiryaev rule, with mi-
nor modifications, is an asymptotically optimal quickest change
detection rule under the conditions given in (3), (4), (21) and
(23) of Tartakovsky (2017). That means the Shiryaev procedure
minimizes the average detection delay (ADD) for a fixed upper
threshold on the false alarm rate (FAR) for the non-iid data
provided that the threshold → ∞ and a few other conditions
are satisfied. The condition (3) of Tartakovsky (2017) for the
optimality is that the prior distribution of the change point must
satisfy (1).

lim
k→∞

log P {Γ ≥ k + 1}
k

= −c, c ≥ 0, (1)

where Γ is the change point. That means the exponential rate
of convergence of the prior distribution must be c ≥ 0, where
c > 0 indicates the prior distribution has an exponential right
tail, and c = 0 indicates the prior distribution is heavy-tailed (Fuh
& Tartakovsky, 2019). An attacker will always try to remain
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tealthy for a long time because the longer time the attacker
emains undetected, the more damage can be caused (Fang et al.,
020). On the other hand, the defender should design a detection
echanism that will detect the attack as soon as possible with an
cceptable FAR to reduce the amount of damage. Therefore, we
ave used the Bayesian approach in this paper, which minimizes
he ADD, whereas the other method, the minimax approach, only
inimizes the worst-case ADD (computed over all possible attack
tart points) (Tartakovsky et al., 2014). Additionally, our work in
his paper is inspired by two other prior works (Banerjee & Veer-
valli, 2012; Premkumar & Kumar, 2008). The quickest intrusion
etection problem is studied in Premkumar and Kumar (2008),
here only a minimal set of sensors from a sensor network is kept
ctive at a particular time instant. The problem of quickest change
etection is also studied in Banerjee and Veeravalli (2012) with
pper bounds on the average number of sensor data used before
he change point and the FAR. In both the problem formulations,
he underlying data was assumed to be iid, which is not the case
or the system under study in this paper. However, similar to
everal other works on change-point detections (Banerjee & Veer-
valli, 2012; Premkumar & Kumar, 2008), we have also assumed
he distribution of the change point, i.e., the attack start point, to
e a geometric distribution with parameter ρ, which satisfies the
ondition given in (1).

.2. Contributions

In our previous work (Naha et al., 2022b), we studied in detail
hat the worst-case ADD decreases with the increase in ∆LQG,
hich denotes the increases in the LQG control cost due to the
ddition of watermarking for the always-present watermarking
cheme. Additionally, ∆LQG is proportional to the watermarking
ignal power. In other words, an attack can be detected early
ith higher watermarking signal power, i.e., at the expense of

ncreased control cost. Therefore, in this paper, we propose a
ethod to reduce the average number of watermarking (ANW)
vents used before the attack start point, which reduces the
verage watermarking signal power and subsequently ∆LQG. We
ormulate the task at hand as a stochastic optimal control prob-
em to minimize the ADD for fixed upper bounds on FAR and
NW and apply dynamic programming to solve it. Similar to any
ther detection technique, there is always a trade-off between
DD and FAR (Tartakovsky & Veeravalli, 2005). We have studied
he structure of the dynamic programming solution, i.e., the so-
ution of the Bellman equation, and found that the optimal policy
s a two threshold policy with thresholds Ths and Thd, Thd

≥ Ths,
n the posterior probability of attack pk under practical circum-
tances. In other words, if pk ≥ Ths, then we add watermarking
o the (k + 1)th control input. On the other hand, if pk ≥ Thd, we
ecide that the attack is present in the system and terminate the
rocess. Our study shows that Ths primarily controls the ANW,
hich in turn controls the ∆LQG value, and Thd primarily controls
he ADD and FAR. Asymptotically approximate analytical expres-
ions of ADD and FAR are derived by applying non-linear renewal
heory for non-iid data. The derived expression of ADD indicates
hat the ADD reduces with the increase of the Kullback–Leibler
ivergence (KLD) between the post- and pre-attack distributions
f the test data. Additionally, the derived analytical expression
f KLD for our problem formulation provides the relationship
etween the KLD and the watermarking signal variance. There-
ore, we use this relationship to derive the optimal watermarking
ignal variance, which maximizes the KLD for a given upper
ound on ∆LQG. We have also obtained an expression of ∆LQG for
given ANW. We have reported a preliminary simulation study
n this problem previously for a single-input single-output (SISO)
ystem in Naha, Teixeira, Ahlen, and Dey (2021a). In the current
 w

3

Table 1
Notations.
Symbol Description

Rn The set of n × 1 real vectors
Rm×n The set of m × n real matrices
ˆ{·} Estimated quantity
E [·] Expectation operator
x̂k|k Estimated state at kth instant using measurements

up to kth instant
[·]T Transpose of a matrix or vector
N (µ, Σ) Gaussian distribution with mean µ and variance Σ

{·} ∪ {·} Union of two sets
Σ ≥ 0 Σ is a positive semi-definite matrix
Σ > 0 Σ is a positive definite matrix
xa,k , ud,k , kth instant values of xa , ud , es , etc.
es,k , etc.
{·}

∗ Optimum quantity
[·]ij ith row and jth column element of a matrix
P {·} Probability measure
Πk Probability of the event {Γ = k}
Pk Probability measure when the change point Γ = k
PΠ

{·} Average probability measure, =
∑

∞

k=1 ΠkPk {·}

EΠ Expectation with respect to probability measure PΠ

f1,j , f2,j , µ1,j , jth instant values of f1 , f2 , µ1 , µ2 , Σ1 , Σ2
µ2,j , Σ1,j , Σ2,j
| · | Determinant of a matrix or absolute value of a scalar
¯{·} Mean value of a quantity
tr(·) Trace of a matrix
{X}

k−1
1 {Xi : 1 ≤ i ≤ k − 1}

1{condition} Indicator function, 1 if condition is true, 0 otherwise

paper, we have performed a more in-depth theoretical analysis
of the problem for general multi-input and multi-output (MIMO)
system models. Our main contributions are as follows.

(1) To the best of our knowledge, this is the first time the
Bayesian approach is applied for the quickest detection
of data deception attacks on NCS with a parsimonious
watermarking policy to reduce the control cost.

(2) We have derived asymptotically approximate analytical ex-
pressions of ADD, FAR and ∆LQG that facilitate the optimal
design of the watermarking process.

(3) We have optimized the watermarking signal variance to
maximize KLD, which improves ADD for a fixed upper
bound on the ∆LQG.

The paper is organized as follows. Section 2 discusses the
system model and the attack strategy considered in this paper.
The defence mechanism is explained in Section 3. Section 4 pro-
vides the analytical expressions of ADD, FAR and the relationship
between the ANW and ∆LQG. It also explains the optimiza-
tion framework for the watermarking signal variance. Section 5
presents and discusses the simulation results. Section 6 concludes
the paper.

1.3. Notations

We have used capital bold letters, e.g., A, B, etc. to specify
atrices and small bold letters, e.g., x, y, etc. to specify vectors,
nless specified otherwise. Some special notations are given in
able 1.

. System model

The system model during normal operations and the model

ith the data deception attack are discussed in this section.
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Fig. 1. Schematic diagram of the system during normal operation.

2.1. System model during normal operation

A schematic diagram of a standard NCS during the normal
peration is shown in Fig. 1. We assume a linear time-invariant
IMO plant with the following state update and measurement
quations,

k+1 = Axk + Buk + wk, (2)

yk = Cxk + vk, (3)

where xk ∈ Rn and yk ∈ Rm are the state and measurement
vectors, respectively. uk ∈ Rp is the control input vector. The
process and observation noise vectors are denoted as wk ∈ Rn

∼

N (0,Q) and vk ∈ Rm
∼ N (0,R), respectively, with Q > 0 and

R > 0. Here, A ∈ Rn×n, B ∈ Rn×p, Q ∈ Rn×n, C ∈ Rm×n, and
R ∈ Rm×m. Process and observation noises are assumed to be iid
and uncorrelated to each other and with the initial state vector.
We also assume that the system has been operational for a very
long time and is currently in steady-state.

The states of the system are estimated using the Kalman
estimator. The sensor measurements are available to a remote
estimator/controller, possibly over a wireless link, which may be
vulnerable to malicious data deception attacks. In the absence of
an attack, the time update and measurement update equations
are as follows,

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1, (4)

x̂k|k = x̂k|k−1 + Kγk, (5)

where x̂k|k−1 = E[xk|Ik−1] and x̂k|k = E[xk|Ik] are the Kalman
predicted and filtered states, respectively. E[·] denotes the expec-
tation operator, and Ik ≜ {u0,u1, . . .uk, y0, y1, . . . yk} is the set
of all information up to time k. The innovation signal γk and the
steady state Kalman filter gain K are given as,

γk = yk − Cx̂k|k−1, (6)

K = PCT (CPCT
+ R

)−1
, (7)

here P = E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)T

]
is the steady state

rror covariance. In steady-state P becomes the solution to the
ollowing algebraic Riccati equation,

= APAT
+ Q − APCT (CPCT

+ R
)−1 CPAT . (8)

he estimated states are fed to a state feedback controller which
s assumed to be an infinite horizon linear quadratic Gaussian
LQG) controller. The optimal control input u∗

k is derived by
inimizing the following cost function,

= lim
T→∞

E

[
1

2T + 1

{
T∑

k=−T

(
xTkWxk + uT

kUuk
)}]

(9)

Here W ≥ 0 and U ≥ 0 are weight matrices. The optimal LQG
control input turns out to be the following linear function of the
estimated states, u∗

k = Lx̂k|k, where

L = −
(
BTSB + U

)−1 BTSA.
4

Fig. 2. Schematic diagram of the system under attack.

Here, S is the solution to the following algebraic Riccati equa-
ion,

= ATSA + W − ATSB
(
BTSB + U

)−1 BTSA. (10)

.2. Attack model

We make the following assumptions regarding the capabilities
nd knowledge of an attacker:

(1) the attacker can access the sensor nodes and replace the
true observations with fake data;

(2) the attacker has complete knowledge about the system and
the controller, i.e., the attacker knows A, B, C, Q, R, and L;

(3) the attacker cannot access or alter the control signal.

To launch a data deception attack, the attacker replaces the true
observations yk by the fake data zk from k ≥ Γ . A well-studied
ethod to achieve this is to transmit the fake observations with
ignificantly higher power than the true measurements from
he sensors. As a result, the wireless control system receiver
ccepts the fake measurements as legitimate while rejecting the
rue measurements from the sensor nodes. Such attack mod-
ls are also known as sensor spoofing attacks (Liu, Bianchin, &
asqualetti, 2020; Yılmaz & Arslan, 2015). The fake observation
ata zk is assumed to be generated from the following linear
tationary stochastic process,

k = Aazk−1 + wa,k−1, (11)

where wa,k ∼ N (0,Qa) is the iid noise vector at the kth time
instant, and Qa ∈ Rm×m. A similar attack strategy is also studied
n Li and Ye (2022), where the stealthiness of the attack signal
s evaluated in terms of the KLD between the distributions of
he fake and true observations. The attacker’s system matrix Aa
nd the noise covariance matrix Qa should be designed in such

a way so that the fake data zk mimics the statistical properties
of the true measurement yk. Aa mainly models the correlations
between the current and past measurements, and Qa models
the uncertainty. Designing Aa and Qa in such a way increases
the stealthiness of the attack signal. A schematic diagram of the
system under the data deception attack is shown in Fig. 2.

Remark 1. In general, for linear control systems, the measure-
ment vector yk can be modelled as a stochastic process that is
dependent on its past values with an additive i.i.d noise com-
ponent, i.e., similar to (11). In other words, the attack model in
(11) mimics the linear stationary stochastic model of yk, which
makes it challenging to detect. In addition to that, the attack
model in (11) can make closed-loop control systems unstable,
as discussed in Naha, Teixeira, Ahlén, and Dey (2021b), which
may cause a significant amount of damage to CPS. Since the at-
tacker’s objectives are to cause damage to the CPS and to remain
stealthy in doing so, the attack model considered in this paper
(11) facilitates the attacker in achieving both the objectives, thus
illustrating the significance of such an attack model. Moreover,
such an attack model can be used to detect replay attacks after a
few modifications, as demonstrated in Naha, Teixeira, Ahlén, and
Dey (2022c).
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During the attack, i.e., for k ≥ Γ , the innovation signal will
take the following form,

γk = zk − Cx̂k|k−1, (12)

whereas x̂k|k−1 and x̂k|k will follow the same time update and
measurement update equations (4) and (5), respectively. How-
ever, the γk in (5) for k ≥ Γ will follow (12). Note that, after the
attack start point, i.e., k ≥ Γ , the defender does not change the
Kalman filter. However, since the attacker replaces yk by the fake
data zk from k ≥ Γ , the innovation signal γk automatically takes
the form given in (12).

As studied in several works of literature, the distribution of
the attack start point can be modelled as exponential distribution
for continuous-time systems (Arnold, Hermanns, Pulungan, &
Stoelinga, 2014; Jonsson & Olovsson, 1997). In Jonsson and Olovs-
son (1997), the authors collected empirical data from intrusion
experiments and found that the attack start points are approxi-
mately exponentially distributed. On the other hand, the authors
formalized the semantics of attack trees and used them for the
probabilistic timed evaluation of attack scenarios in Arnold et al.
(2014). Additionally, the authors studied various practical sys-
tems, including the famous Stuxnet attack (Langner, 2011), and
derived the distribution of the attack start time to be expo-
nential. Since the exponential and geometric distributions play
analogous roles in the continuous and discrete time domains,
respectively (Prochaska, 1973), we have modelled the attack start
point Γ to be an RV that follows a geometric distribution with
parameter ρ, where 0 < ρ < 1. Here ρ is a design parameter
reflecting the defender’s belief of how often attacks occur. For
the proposed method, ρ is a parameter that needs to be set by
the defender. A vulnerability analysis of the system can decide
the value of ρ, see Arnold et al. (2014) and Jonsson and Olovsson
(1997). From the derived approximate analytical expressions of
ADD (60), FAR (61) and ∆LQG (72), we can say that ADD and
∆LQG will not be affected much by the difference in the chosen
ρ and the attacker’s true ρ, as long as both ρ ≪ 1, which
is a realistic assumption since attacks are rare events. On the
other hand, FAR will increase if the chosen ρ is higher than the
attacker’s true ρ and vice versa. The defender can thus choose
a suitable ρ, depending on the specification on the maximum
false alarm rate. Finally, we can write the prior probability Πk ≜
P {Γ = k} in the following form (Banerjee & Veeravalli, 2012),

Πk = Π01{k=0} + (1 − Π0) ρ (1 − ρ)k−1 1{k≥1}. (13)

Here, Π0 ≜ P {Γ ≤ 0}, i.e., Π0 is the prior probability of the
attack happening before the start of the observation. 1{condition} is
the indicator function, which takes the value 1 if the condition is
true, or 0 otherwise. In general, 0 ≤ Π0 < 1. However, for our
problem formulation, we have taken Π0 = 0. We assume that
the defender does not know the exact value of Γ , but knows the
prior distribution of Γ .

3. Proposed detection strategy

We perform the following hypothesis test to detect the pres-
ence of an attack,

H0: No attack present

H1: Attack present in the system

We parsimoniously add an iid watermarking signal, given as

ek ∼ N (0,Σe), (14)

to the optimal LQG control input, u∗

k , to improve the detectability
of the attack, see (17). The decision of adding or not adding the
watermarking and the selection of hypothesis for the kth time
5

Fig. 3. Schematic diagram of the system with the proposed watermarking
scheme.

instant is controlled by the optimal policy u∗

d . Here, the subscript
d of u∗

d indicates that the optimal policy is derived using dynamic
programming. The policy ud,k decides the values of the following
two control variables sk and dk at the kth time instant,

sk =

{
0, No watermarking for (k + 1)th time instant.
1, Watermarking added for (k + 1)th time instant.

(15)

dk =

{
0, Hypothesis H0 selected, process continues.
1, Hypothesis H1 selected, process terminated.

(16)

uk = u∗

k + sk−1ek. (17)

Fig. 3 illustrates the proposed watermarking and attack detection
scheme with a schematic diagram of the system. The components
enclosed inside the blue dotted rectangle are assumed to be
located at a secure location.

3.1. Problem formulation

Our objective is to find the optimal policy u∗

d that minimizes
the ADD for fixed upper bounds on FAR and ANW. First, we
introduce the formal definitions of FAR, ADD and ANW as follows.
The definitions of FAR and ADD are similar to Tartakovsky and
Veeravalli (2005).

False alarm rate (FAR): FAR is defined as

FAR ≜ PΠ
{τ < Γ } . (18)

ere, PΠ indicates the average probability measure. PΠ
{Ω} =∑

∞

k=1 ΠkPk {Ω}, where Ω is any event and Pk is the probability
measure when the change point Γ = k. τ is the time instant
when the hypothesis H1 is selected.

Average detection delay (ADD): ADD is defined as

ADD ≜ EΠ [τ − Γ |τ ≥ Γ ] . (19)

ere, EΠ denotes the expectation with respect to the probability
easure PΠ .

verage number of watermarking events (ANW) before attack:
NW is defined as

NW ≜ EΠ

[min(τ ,Γ −1)∑
i=1

si

]
. (20)

ere, si is the same variable as given in (15).
Now, we formulate the following optimization problem,

min
ud

ADD,

.t. FAR ≤ FARth,

NW ≤ ANWth,

(21)

here FARth and ANWth are the user-selected thresholds. Then,
he constrained optimization problem of (21) is converted into
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n unconstrained Lagrangian form as follows. The unconstrained
agrangian form adopted in this paper is similar to Banerjee and
eeravalli (2012) and Beutler and Ross (1985), except the term
eANW , and it reads as
∗

= min
ud

ADD + λf FAR + λeANW , (22)

here λf ≥ 0 and λe ≥ 0 are the Lagrangian multipliers. A new
tate variable θk is defined as

k ≜

⎧⎪⎪⎨⎪⎪⎩
0, No attack,
1, System under attack,
Te, Attack detected by hypothesis testing

and process terminated.

(23)

imilar to Banerjee and Veeravalli (2012), ADD, FAR and ANW can
lso be expressed in terms of the control variables, sk and dk, and
he state variable θk as follows,

ADD = E

[
τ∑

k=1

1{θk=1}1{dk=0}

]
, (24)

FAR = E

[
τ∑

k=1

1{θk=0}1{dk=1}

]
, and (25)

ANW = E

[
τ∑

k=1

1{θk=0}1{sk=1}1{dk=0}

]
. (26)

Using (24)–(26), the cost function of (22) can be expressed as

J∗ = min
ud

E

[
τ∑

k=1

gk (θk, sk, dk)

]
, (27)

here gk(·) is the per stage cost, expressed as

k (θk, sk, dk) = 1{θk ̸=Te}
[
1{θk=1}1{dk=0}

+λf 1{θk=0}1{dk=1} + λe1{θk=0}1{sk=1}1{dk=0}
]
.

(28)

Here, the first, second and third terms of (28) come from ADD,
FAR and ANW, respectively. For the stochastic optimal control
problem defined in (27), the state θk is not observable to the
defender. Therefore, we replace the state θk by its sufficient statis-
ics pk. The sufficient statistics pk, i.e., the posterior probability
f attack at kth time instant is defined as, pk ≜ P {Γ ≤ k|Ψk} =[
1{θk=1}|Ψk

]
, where Ψk |. The optimization problem in (27) is

hen redefined and solved using pk as discussed in details in the
ollowing Section 3.2.

The accessibility hypothesis discussed in Beutler and Ross
1985) tells us that under this hypothesis, for every stationary de-
erministic policy ud ∈ U , any arbitrary state, say θk is accessible
rom each starting state θk = θ0. Here, U is the set of all per-
issible stationary deterministic policies. Under the accessibility
ypothesis, the dynamic programming equation using the cost
unction of (27) is solvable by at least one stationary deterministic
olicy for each λf ≥ 0 and λe ≥ 0 (Beutler & Ross, 1985).

.2. Finding the optimal policy

This section discusses the solution approach taken to solve the
ptimization problem of (27) in the following three main steps.

.2.1. Selection of test signals
Combining (2)–(6) and (12), we can represent the innovation

ignal as

or k < Γ ,

k = CA
(
xk−1 − x̂k−1|k−1

)
+ Cwk−1 + vk, and (29)

or k ≥ Γ ,
6

γk = zk − C (A + BL) x̂k−1|k−1 − CBsk−2ek−1. (30)

So, the innovation signal is dependent on the watermarking signal
after the attack, see (30). On the contrary, the innovation signal
is independent of the watermarking signal before the attack, see
(29). It is assumed that the attacker will be replacing the true
stationary observation yk with fake but stationary data zk to
remain stealthy. In addition to that, as discussed in Section 3.3,
the optimal policy u∗

d is also a stationary one. Therefore, the
innovation signal will be stationary but with different distribu-
tions before and after the attack, as k → ∞. Also, from the
properties of the Kalman filter, we know the innovation signal is
iid before the attack. Additionally, the use of the joint statistics of
the innovation signal and the watermarking signal increases the
KLD compared to the case where the statistics of the innovation
signal alone is used, see Theorem 1 and Remark 1 from Salimi
et al. (2019), where the improvement in KLD has been quantified
for a single-input single-output (SISO) system. These reasons
motivate us to use the joint distribution of the innovation signal
and the watermarking signal to generate the test statistics for
attack detections.

3.2.2. Derivation of test statistics
We use the Shiryaev statistics because of its asymptotic op-

timality for a fixed upper bound on FAR as stated in Theorem 1
from Tartakovsky (2017). The data is assumed to be iid before
and after the change point in Tartakovsky (2017). In contrast
to Tartakovsky (2017), in our study, the innovation signal γk is iid
before the attack and non-iid after the attack. From Tartakovsky
et al. (2014), the Shiryaev statistics SRk at the kth instant in time
for our problem formulation can be written as

SRk =

k∑
i=1

k∏
j=i

Lj

1 − ρ
, (31)

here i is the candidate change or attack start point, and Lj is
he likelihood ratio. The expression for Lj is given in Lemma 1.
fter the change point, SRk increases on average. In the original
hiryaev procedure, a change is detected once SRk crosses a
redefined threshold for the first time.

emma 1. The likelihood ratio Lj used to derive the Shiryaev
tatistics (31) considering the joint distribution of the innovation
ignals ((29) and (30)) and the watermarking signal (14), takes the
ollowing form,

j =

{
La,j, j > i
Lb,j, j = i,

and (32)

La,j =

f1,j
(
γj| {γ }

j−1
1 , {es}

j−1
1

)
f0
(
γj
) , (33)

b,j =

f2,j
(
γj| {γ }

j−1
1 , {es}

j−1
1

)
f0
(
γj
) . (34)

ere, f1,j (·|·), f2,j (·|·) and f0 (·) denote the distributions for j > i,
= i and j < i, respectively, and es,j = sj−1ej. f1,j (·|·), f2,j (·|·) and

0 (·) take the following forms,

1,j (·|·) = N
(
µ1,j, Σ1,j|zj−1, x̂j−1|j−1, es,j−1

)
, (35)

f2,j (·|·) = N
(
µ2,j, Σ2,j|x̂j−1|j−1, es,j−1

)
, (36)

f0 (·) = N (0, Σ0) . (37)

Here

µ = A z − C A + BL x̂ − CBe (38)
1,j a j−1 ( ) j−1|j−1 s,j−1
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2,j = −C (A + BL) x̂j−1|j−1 − CBes,j−1 (39)

Σ1,j = Qa (40)

Σ2,j = Qz (41)

Σ0 = CPCT
+ R (42)

Proof. The proof of Lemma 1 can be found in Appendix A of Naha,
Teixeira, Ahlén, and Dey (2022a). It is omitted from this paper due
to space limitations. □

Eq. (31) is same as the original Shiryaev statistics, where Π0 is
assumed to be 0, see (6.9) from Tartakovsky et al. (2014). How-
ever, the term Lj in (31) is derived exclusively for the problem
under study, where the test data is iid before the change point
and non-iid with stationary distributions after the change point.
Furthermore, Lemma 1 shows that the dependency of the test
data γj on the previous values of γ and es from the time index
1 to j − 1 can be approximated as given in (33)–(39), where γj is
only dependent on the immediate past values, i.e., at time index
j − 1, of z, x̂ and es.

Remark 2. The likelihood ratios using the distributions of the
innovation signal alone, say, Lc,j and Ld,j for j < i and j = i,
respectively, can be evaluated from Lemma 1 by using es,j−1 = 0
in (35)–(36). Therefore, we can write Lc,j = La,j |es,j−1=0 and
Ld,j = Lb,j |es,j−1=0.

We have applied the value iteration from Bertsekas (1995)
using sufficient statistics pk to solve (27), which is an infinite hori-
zon dynamic programming problem with a termination state. The
relationship between the Shiryaev statistics SRk and the posterior
probability of attack pk is given by, see (6.10) from Tartakovsky
et al. (2014),

pk =
SRk

SRk + 1/ρ
. (43)

Lemma 2 provides the recursion formula of pk, which is used for
the value iteration.

Lemma 2. The posterior probability of attack at the kth time
instant, pk, for the test data γk (iid (29) and non-iid (30)) and
ek (14), can be updated using the following recursion formula, when
the attack start point is geometrically distributed with parameter ρ,

pk =
pk−1Lc,k + (1 − pk−1) ρLd,k

(1 − ρ) (1 − pk−1) + pk−1Lc,k + (1 − pk−1) ρLd,k
,

when sk−2 = 0, and

pk =
pk−1La,k + (1 − pk−1) ρLb,k

(1 − ρ) (1 − pk−1) + pk−1La,k + (1 − pk−1) ρLb,k
,

therwise. (44)

roof. Using (31), the recursion formula of the Shiryaev statistics
Rk is derived first, see (45). Then using (43) in (45), the recursion
quations of (44) are derived.

Rk =

{Lc,k
1−ρ

SRk−1 +
Ld,k
1−ρ

, sk−2 = 0,
La,k
1−ρ

SRk−1 +
Lb,k
1−ρ

, sk−2 = 1. □
(45)

We use the following simplified notations to represent the
recursion formula in (44). pk = φ0 (pk−1), if sk−2 = 0, and
k = φ1 (pk−1), otherwise. Also, the initial value of pk is taken
o be 0.
7

Table 2
U .
ud,k sk dk
1 0 0
2 1 0
3 0 1

3.2.3. Solution of optimization problem (27)
The expected value of the per stage cost function gk(·) in (27)

is derived by taking expectations on both sides of (28), and using
pk = E

[
1{θk=1}|Ψk

]
, see (46).

E [gk (θk, sk, dk) |Ψk] = pk1{dk=0}+

λf (1 − pk) 1{dk=1} + λe (1 − pk) 1{sk=1}1{dk=0}.
(46)

The Bellman equation for the infinite horizon cost function (27)
with the termination state Te can be formulated using the suffi-
cient statistics pk as follows,

J (pk) = min
ud⊂U

[
pk1{dk=0} + λf (1 − pk) 1{dk=1}

+λe (1 − pk) 1{sk=1}1{dk=0} + B0 (pk) 1{sk=0}1{dk=0}

+B1 (pk) 1{sk=1}1{dk=0}
]
, (47)

where U = {1, 2, 3} is the set of all stationary deterministic
permissible policies, see Table 2. B0 (pk) = E [J (φ0 (pk))], and
B1 (pk) = E [J (φ1 (pk))]. Therefore, B0 (pk) and B1 (pk) denote the
expected total costs from (k+1)th time instant till the termination
of the process when sk = 0 and sk = 1, respectively, and dk = 0.
Note that, when dk = 1, the process terminates immediately,
so there will be no additional cost after the kth time instant. In
addition to that, if dk = 1 then the process will immediately
terminate, and there will be no use of adding watermarking at the
(k+1)th time instant, therefore, the combination (sk = 1, dk = 1)
has been ignored.

To satisfy the accessibility hypothesis, we have discretized the
space of the sufficient statistics pk into a finite set during the
numerical simulations. On the other hand, the control space of
the stochastic optimization problem under study is inherently
discrete and finite. Finally, the value iteration is used to solve the
Bellman equation (47) and to find the optimal policy u∗

d .

3.3. Structural properties of the optimal policy

In this subsection, we will study the structure of the optimal
solution found by solving the Bellman equation (47).

Assumption A.1. There exist at least one stationary deterministic
policy ud, for which both the constraints as given in (21) will be
satisfied.

Assumption A.1 is about the feasibility of the existence of a
stationary deterministic policy for the optimization problem in
(21). Now the value iteration reveals the following optimal policy
for selecting the control variables sk and dk values.

sk =

{
0, B0 (pk) − B1 (pk) < λe (1 − pk) ,

1, otherwise.
(48)

dk =

⎧⎨⎩
0, pk + λe (1 − pk) 1{sk=1} + B0 (pk) 1{sk=0}

+ B1 (pk) 1{sk=1} < λf (1 − pk) ,

1, otherwise.
(49)

First, we will prove that the optimal policy is going to be a sta-
tionary deterministic policy. As stated in Lemma 3.1 from Beutler

and Ross (1985), the costs FAR and ANW will be monotone and
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on-increasing in λf and λe, respectively. We can prove that by
ollowing the similar steps used to prove Lemma 3.1 in Beutler
nd Ross (1985). From the monotone and non-increasing prop-
rties of FAR and ANW, it can be proved that the inequality
onditions in the original constrained optimization problem (21)
ill be satisfied for finite values of λf ≥ 0 and λe ≥ 0 for some
eterministic policy as stated in Lemma 3.3 from Beutler and Ross
1985).

Finally, as discussed in Beutler and Ross (1985), under
ssumption A.1 or the weaker condition of Lemma 3.1, the sta-
ionary deterministic optimal policy found by solving the Bellman
quation (47) from the unconstrained optimization problem with
he Lagrangian multipliers, λe and λf , will be the solution of the
riginal constrained problem as given in (21).
Even though a formal proof is unavailable at this point, we

ave performed extensive numerical simulations and found that
or the following properties of the optimal policy: The optimal
olicy is a two threshold policy, Ths and Thd, Thd

≥ Ths. Figs. 4 and
5 provide the insights with thresholds of a two-threshold policy
by plotting the left-hand sides (LHS) and right-hand sides (RHS)
of (48) and (49), respectively, for a relatively small λe and large λf .

e observe that for (48), the LHS crosses the RHS at two points,
ut the second crossing happens after dk = 1, i.e., the termination
f the process, which results in a two-threshold policy. We have
ound that for a relatively large λe or ρ near to unity, the optimal
olicy may even become a one or three-threshold policy, which
s similar to the findings of Banerjee and Veeravalli (2012). The
ollowing steps can be followed offline to find the two thresholds.

tep 1 : The search space of λe and λf is divided into N equally
spaced grid points.

tep 2 : For each grid point, we perform the value iterations
using (47), and store J∗(pk) where pk is also discretized in
[0, 1].

tep 3 : For each grid point, ADD, FAR and ANW are evaluated
from Monte-Carlo simulations by deriving the decision
variables sk and dk from (48)–(49) using J∗(pk) from Step
2.

tep 4 : Select the best λ∗
e and λ∗

f combination, which gives
minimum ADD and satisfies the constraints on FAR and
ANW, see (21).

tep 5 : Apply numerical solvers such as the Trust-Region algo-
rithm, the bisection method, etc., to solve the following
two equations for p̄, see (50) and (51). The solutions of (50)
are p̄ = Ths and p̄ = 1. Eq. (51) is derived from (49) using
sk = 0 and solved for p̄ ∈ [Ths, 1]. The solutions of (51) is
p̄ = Thd and p̄ = 1.

B0 (p̄) − B1 (p̄) = λe (1 − p̄) (50)

p̄ + λe (1 − p̄) + B1 (p̄) = λf (1 − p̄) (51)

Finally, the optimal policy u∗

d is given as

u∗

d,k =

⎧⎨⎩
1, i.e., (sk = 0, dk = 0) pk < Ths,

2, i.e., (sk = 1, dk = 0) pk ≥ Ths,

3, i.e., (sk = 0, dk = 1) pk ≥ Thd.

(52)

Next, we briefly discuss the computational runtime complex-
ty of the proposed policy.
8

Fig. 4. LHS and RHS of (48) vs. pk for System-A. λe = 0.2, λf = 100, and
2
e = 1.19.

Fig. 5. LHS and RHS of (49) vs. pk for System-A. λe = 0.2, λf = 100, and
2
e = 1.19.

.4. Computational complexity

The proposed technique is an online method. At run time, we
nly need to evaluate pk (44) and compare it with two thresholds
t each time step. For our problem formulation, most of the
eavy computations, such as matrix inversion and computation
f determinants, associated with the evaluation of the likelihood
atio (32) can be derived offline since the variances are fixed, see
40)–(42). The most expensive operations at run-time are a few
atrix–vector multiplications with the highest computational
omplexity of O(np), see (38) and (39).

. Derivations of ADD, FAR and ∆LQG

This section derives the asymptotically approximate analytical
xpressions of ADD, FAR and ∆LQG for the given thresholds Ths

nd Thd, and a few other parameters to be defined later.

.1. Approximate expressions of ADD and FAR

Here we derive the approximate expressions of ADD and FAR,
s Thd

→ ∞, applying non-linear renewal theory (Siegmund,
013; Tartakovsky & Veeravalli, 2005). First, the Shiryaev statis-
ics SRk is converted into LSRk = log (SRk) for the ease of asymp-
otic analysis. LSRk can be expressed as a summation of two
ariables, Sk and lk, as given in the following Lemma 3.

emma 3. The logarithm of the Shiryaev statistics, LSRk, generated
rom the test data, i.e., the innovation signal γk ((29) and (30)) and
he watermarking signal e (14), under the two threshold policy Ths
k
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nd Thd, can be expressed as the summation of two variables Sk and
k, see (53). Here Sk (54) is a ladder variable, and lk (55) is a slowly
hanging variable in the sense defined in (Siegmund, 2013).

SRk = Sk + lk. (53)

k = Zk + k| log(1 − ρ)|. (54)

k = log

(
SR0 +

k∑
i=1

(1 − ρ)i−1Ld,i exp(−λi)1{LSRi<ThS}

+

k∑
i=1

(1 − ρ)i−1Lb,i exp(−λi)1{LSRi≥ThS}

)

+

k∑
j=1

log
(
Lc,j
)
1{LSRj<ThS} −

k∑
j=1

log
(
La,j

)
1{LSRj<ThS},

(55)

here

Zk =

k∑
i=1

log
(
La,i
)
, (56)

λk =

k∑
i=1

log
(
La,i
)
1{LSRi≥ThS}

+

k∑
i=1

log
(
Lc,i
)
1{LSRi<ThS}, and (57)

hS
= log

Ths

ρ (1 − Ths)
. (58)

roof. The proof of Lemma 3 is provided in Appendix A. □

emark 3. The threshold Ths for pk is equivalent to the threshold
hS for LSRk. Similarly, we can define the threshold ThD as

hD ≜ log
Thd

ρ
(
1 − Thd

) (59)

or LSRk, which is equivalent to the threshold Thd for pk. Also, as
hd

→ 1, ThD
→ ∞.

Therefore, Lemma 3 enables us to apply non-linear renewal
theory to derive the approximate expressions of ADD and FAR
by splitting the logarithm of the Shiryaev statistics, LSRk, into a
ladder variable Sk and a slowly changing term lk. The definition of
a slowly changing variable from Siegmund (2013) is also provided
in Appendix A. We define the variable r to be the overshoot of the
adder variable Snd over a large threshold ThD at k = nd. Therefore,
nd ≜ Snd − ThD as ThD

→ ∞, and nd = inf
{
k ≥ 1 : Sk ≥ ThD

}
.

ccording to the non-linear renewal theory (Siegmund, 2013),
he overshoot statistics of LSRk crossing a large threshold ThD

an be approximated as the statistics of rnd , provided lk is slowly
hanging and ThD

→ ∞. The approximate expressions of ADD
nd FAR derived in this paper are stated in Theorem 1.

heorem 1. For the Shiryaev statistics given in Lemma 1 and
he geometric prior distribution of the change point Γ (13), under
he two threshold policy Ths and Thd, the asymptotic approximate
xpressions of ADD and FAR as ThD

→ ∞ will take the following
orms, provided the conditions C1–C4 are satisfied.

onditions :

1: {Zk : k ≥ 1} is nonarithmetic with respect to P0 and P1.[ 2]
2: E1 | Z1 | is finite.

9

3: lk (55) is a slowly changing variable in the
ense defined in Siegmund (2013).
C4: 0 < E1

[
D
(

f e
1 , f0

)]
< ∞, and 0 < E0

[
D
(

f0, f e
1

)]
< ∞.

Then,

ADD =
ThD

+ r̄ − l̄
E1
[
D
(

f e
1 , f0

)]
+ | log(1 − ρ)|

+ o(1), (60)

nd FAR ≈
ξ

ρ exp
(
ThD

) (1 + o(1)) , as ThD
→ ∞, (61)

here

¯ = lim
nd→∞

E1
[
rnd
]
, (62)

l = lim
k→∞

E1 [lk] , (63)

= lim
nd→∞

E1
[
exp

(
−rnd

)]
. (64)

0 and P1 denote the probability measures before and after the
ttack, respectively. E0 and E1 denote the expectations with respect
o the probability measures P0 and P1, respectively. E1

[
D
(

f e
1 , f0

)]
is

he expected KLD between the distributions f e
1,j (·|·) and f2,j (·|·), and

e
1,j (·|·) = f1,j (·|·) when sj = 1 for all j. Here, the expectation is taken
over the joint distribution of the innovation signal and the water-
marking signal after the attack start point. Similarly, E0

[
D
(

f0, f e
1

)]
is the expected KLD between f0 and f e

1 , and the expectation is
taken over the joint distribution of the innovation signal and the
watermarking signal before the attack start point.

Proof. The proof of Theorem 1 is provided in Appendix B. □

Remark 4. As given in Lemma 1 and Theorem 2 of Naha et al.
(2021b), E1

[
D
(

f e
1 , f0

)]
will take the following form,

E1
[
D
(

f e
1 , f0

)]
=

1
2

{
tr
(
Σ

−1
0 Σγ̃

)
− m − log

| Qa |

| Σ0 |

}
, (65)

where the covariance matrix Σγ̃ of the innovation signal after the
attack start point is given as

Σγ̃ = Ezz(0) − C(A + BL)Exz(−1)

− [C(A + BL)Exz(−1)]T + CBΣeBTCT

+ C(A + BL)ΣxF z(A + BL)TCT

+ C(A + BL)ΣxF e(A + BL)TCT , (66)

where Exz(−1) =

∞∑
i=0

AiKAi+1
a Ezz (0) (67)

nd Ezz(0) = E
[
zkzTk

]
. ΣxF z and ΣxF e are the solutions to the

ollowing Lyapunov equations,

ΣxF zA
T

− ΣxF z + KEzz(0)KT
+ AExz(−1)KT

+
(
AExz(−1)KT )T

= 0, and (68)

ΣxF eA
T

− ΣxF e + (In − KC)BΣeBT (In − KC)T = 0. (69)

ere A = (In − KC) (A + BL), which is assumed to be strictly
table. In is an identity matrix of size n × n.

Therefore, we can derive approximate values of ADD and FAR
sing Theorem 1 for the given thresholds, Thd and Ths, and the
ystem and noise parameters. The denominator of (60) does not
epend on the thresholds. Also, according to the renewal theory,
he statistics obtained from the overshoot rnd , i.e., r̄ and ξ , are not
ependent on the exact values of the thresholds as long as Thd is
arge enough. However, from (55), we can say that l̄ is dependent
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n the threshold Ths. Further approximation of the expression of
DD (60) can be directly obtained from Theorem 1 as stated in
orollary 1.1.

orollary 1.1. The approximate expression of ADD as provided in
Theorem 1 can be further simplified as follows,

ADD ≈
ThD

E1
[
D
(

f e
1 , f0

)]
+ | log(1 − ρ)|

, as ThD
→ ∞ (70)

Proof. r̄ ≪ ThD and l̄ ≪ ThD, since ThD
→ ∞. Therefore, by

ignoring r̄ and l̄ from (60), we get (70). □

The approximate expression of ADD as provided in
Corollary 1.1 does not depend on the threshold Ths. Therefore,
Corollary 1.1 can also be used to find a suitable value of the
threshold Thd for a given ADD.

Remark 5. Finding analytical expressions for r̄ , l̄, and ξ is difficult
for the system under consideration. Therefore, we estimate their
values by Monte-Carlo (MC) simulation. The values of r̄ , l̄, and ξ

are not directly dependent on ThD as long as ThD is very large,
but they depend on ThS . However, to derive the ADD using the
second approximate expression as given in Corollary 1.1, we do
not need the values of r̄ , l̄, and ξ , but it is less accurate compared
to Theorem 1.

Remark 6. In order to use the quickest detection scheme, the
pre and post-change pdfs must be known. To achieve that, we
need to know Aa and Qa. In practice, it is highly likely that the
attacker’s system parameters Aa and Qa may not be known a
riori. In such a case, the attacker’s system parameters Aa and
a can be estimated online from the received observations (true
r fake) by fitting a vector autoregressive model to the obser-
ations (Akaike, 1969). This estimator will operate in parallel
ith the attack detection algorithm. Such a parameter estimation
cheme will operate before and after the attack. However, before
he attack, the estimates of Aa and Qa will represent the healthy
lant model. We have conducted some preliminary studies using
MISO system where our attack detection algorithm can perform
ith estimated parameters, albeit with additional watermarking
ompared to the known parameter case. A detailed analysis of
uch a joint estimation and detection scheme is however, beyond
he scope of the current manuscript, and interested readers are
eferred to Xie, Zou, Xie, and Veeravalli (2021). Additionally, we
lso comment that under a replay attack, Aa and Qa can be
erived from the normal system model as discussed in Naha et al.
2022b).

.2. Approximate expression of ANW and ∆LQG

Following similar steps as in Banerjee and Veeravalli (2012),
he ANW can be approximated as follows,

NW ≈
E0
[
t1
(
ThS
)]

E0
[
t1
(
ThS
)]

+ E0
[
t2
(
LSRThS , ThS

)]
× P

{
t
(
ThS) < Γ

}
.

(71)

ere, t1
(
ThS
)
denotes the time interval between the time in-

tances when LSRk starts from ThS , and then crosses the threshold
hS from above. t2

(
LSRThS , ThS

)
denotes the time interval between

he time instances when LSRk starts from LSRThS and crosses the
threshold ThS from below. t

(
ThS
)
is the first time LSRk crosses the

threshold ThS from below. An example plot of LSRk is shown in
Fig. 6 to illustrate the variables t1(·), t2(·), and t(·). E0[·] denotes
the expectation with respect to the probability measure before
 ∆

10
Fig. 6. An example plot of LSR vs. time index n.

the attack. Deriving analytical expressions for the expectations
and the probability values in (71) is difficult. Therefore, we per-
form MC simulation to estimate the ANW for the given thresholds
ThS and ThD. The relationship between the ANW and the increase
in the control cost is given in the following theorem.

Theorem 2. For the parsimonious watermarking scheme adopted
in this paper, the increase in the LQG control cost, ∆LQG, is related
to ANW as

∆LQG = ρANWtr (HΣe) , (72)

here H = BTΣLB + U (73)

nd ΣL is the solution to the following Lyapunov equation.

A + BL)T ΣL (A + BL) − ΣL + LTUL + W = 0. (74)

roof. The proof of Theorem 2 can be found in Appendix D
f Naha et al. (2022a). It is omitted from this paper due to space
imitations. □

Theorem 2 shows that ∆LQG is proportional to ANW and a
inear function of the watermarking signal variance Σe. If wa-
ermarking is added at all the time instants, ρANW will become
nity, and Theorem 2 will coincide with the special case of always
resent watermarking as stated in Theorem 3 in Naha et al.
2021b).

.3. Comparative analysis

The proposed method is compared with the following two
ethods, PW-Σe: persistent watermarking with fixed water-
arking power and PW-∆LQG: persistent watermarking with

ixed ∆LQG. The only difference between the proposed method
nd PW-Σe is that the watermarking is always present for the
atter, and the watermarking power for both the methods is Σe.
n the other hand, the only difference between the proposed
ethod and PW-∆LQG is that the watermarking is always present

or the latter, and the ∆LQG value is the same for both. The
ubscripts P , A and B denote the proposed method, PW-Σe, and
W-∆LQG, respectively.

.3.1. Comparison with PW-Σe

laim 1. The proposed optimal watermarking policy incurs a lesser
ncrease in LQG cost compared to PW-Σe.

The increase in the LQG control cost for PW-Σe is as follows,
ee Theorem 3 from Naha et al. (2021b),
LQGA = tr (HΣe) . (75)
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y comparing the increase in the LQG control cost between the
wo methods, we can write

L̃QG = ∆LQGA − ∆LQGP = (1 − ρANW ) ∆LQGA, (76)

here ∆LQGP denotes the increase in the LQG control cost for the
roposed method. Since, (1 − ρANW ) < 1, we can make Claim 1.

laim 2. The increase in ADD for the proposed optimal policy with
espect to PW-Σe will be small .

There will be an increase in the ADD for the proposed method.
ther than the mean of the slowly changing term, l̄, in the ADD
xpression (60), the rest of the components will be the same for
he proposed method and PW-Σe. Therefore, the increase in the
DD for the proposed method will be as follows,

ADD = ADDP − ADDA ≈
l̄A − l̄P

E1
[
D
(

f e
1 , f0

)]
+ | log(1 − ρ)|

, (77)

here the subscripts A and P denote the PW-Σe and the proposed
ethod, respectively. o(1) notation is dropped for simplicity. Here

P is the same as given by (55) and (63), and l̄A will take the
ollowing form

l̄A = lim
k→∞

E1
[
lA,k
]
, and

A,k = log

(
SR0 +

k∑
i=1

(1 − ρ)i−1Lb,i exp(−Zi)

)
. (78)

ince, l̄A and l̄P both are small quantities compared to ThD, which
s assumed to be → ∞, we can make Claim 2.

laim 3. The FAR for the proposed optimal policy and PW-Σe will
lmost be the same.

Since ThD
≥ ThS , the watermarking will be present for both

ases when Zn crosses the threshold ThD. In other words, the
tatistics of the overshoot rnd will be the same for both methods.
Therefore, we can make Claim 3.

4.3.2. Comparison with PW-∆LQG

Claim 4. The watermarking signal power for the proposed optimal
policy, ΣeP , will be greater than or equal to the watermarking signal
power of PW-∆LQG, ΣeB.

Since the increase in the LQG control cost is taken to be the
same for both the methods, the watermarking signal powers ΣeB
nd ΣeP for the method PW-∆LQG and the proposed method,
espectively, will be different. The relationships between the wa-
ermarking signal power and ∆LQG for both the methods are
iven as,

LQG = tr (HΣeB) = ρANWtr (HΣeP) . (79)

ince ρANW ≤ 1, from (79) we can make Claim 4.

laim 5. The ADD for the proposed optimal policy will be less than
r equal to the ADD for PW-∆LQG.

We use the ADD expression from Corollary 1.1 to compare
he two methods. The difference in the ADD will be due to the
ifference in E1

[
D
(

f e
1 , f0

)]
B and E1

[
D
(

f e
1 , f0

)]
P as follows.

1
[
D
(

f e
1 , f0

)]
P −E1

[
D
(

f e
1 , f0

)]
B

≈
1
2

(
tr
(
Σ−1

γ

(
Σγ̃ P − Σγ̃ A

)))
.

(80)

ere the subscripts B and P denote the method PW-∆LQG and
he proposed method, respectively. By examining (66), we can say
γ̃P −Σγ̃B ≥ 0. Therefore, from (80) we can write E1

[
D
(

f e
1 , f0

)]
P−[

D
(

f e, f
)]

≥ 0, and we can further make Claim 5.
1 1 0 B

11
4.4. Optimum Σe

Theorem 1 and Corollary 1.1 imply that the increase in KLD
will reduce ADD. Therefore, we derive the optimum Σe that will
maximize KLD for a given fixed upper limit on ∆LQG, denoted
as ∆LQGP for the proposed method. The optimization problem is
defined as follows.
max
Σe

E1
[
D
(

f e
1 , f0

)]
,

s.t. ∆LQGP ≤ J,
Σe ≥ 0,

(81)

where J is a user-defined threshold. As given in Remark 4, the KLD
expression for the proposed parsimonious watermarking policy
is identical with the case where watermarking is always present,
i.e., the method PW-Σe. Moreover, ∆LQGP (72) is just a scaled
version of ∆LQGA (75). Therefore, the condition ∆LQGP ≤ J in
81) can be replaced by ∆LQGA ≤ JA, where JA = J/(ρANW ),
without any change in the optimum Σe value. Now, the opti-
mization problem for the proposed method becomes identical to
the optimization problem for the method PW-Σe. According to
Theorem 4 from Naha et al. (2021b), the optimum Σe for PW-Σe
will be a rank one positive semi-definite matrix. Therefore, the
optimization problem in (81) can be written as

max
vλ

E1
[
D
(

f e
1 , f0

)]
s.t. ∆LQGA ≤ JA, (82)

where vλ =
√

σ eve, σe is the non-zero eigenvalue of Σe and
ve is the corresponding eigenvector. As discussed in Naha et al.
(2021b), the maximization of E1

[
D
(

f e
1 , f0

)]
with respect to vλ is

same as maximizing the following function,

max
vλ

vTλHKLDvλ

s.t. ∆LQGA ≤ JA,where (83)

HKLD =BT (In − KC)T κe (In − KC)B + BTCTCB. (84)

Here, κe is the solution to the Lyapunov equation

ATκeA − κe + (A + BL)T CTC (A + BL) = 0. (85)

Since the matrix A is assumed to be strictly stable, the Lyapunov
equation of (85) will have a unique solution. As discussed in Naha
et al. (2021b), the optimization problem of (83) can be solved
by various methods available in the literature, such as sequential
quadratic programming (SQP) (Boggs & Tolle, 1995), interior point
method (Forsgren, Gill, & Wright, 2002), simple gradient-based
method (Naha et al., 2021b), etc. Interested readers are referred
to Naha et al. (2021b) for a detailed analysis, but the same has
been removed from the current paper due to space constraints.

5. Numerical results

This section will illustrate and validate different aspects of the
proposed methodology using, System-A: a second-order multi-
input single-output (MISO) open-loop unstable system and
System-B: a fourth-order MIMO open-loop stable system.
Appendix C provides the required parameters for simulations
associated with System A and B.

5.0.1. Optimal policy
Fig. 7 shows the optimal decision variable u∗

d,k vs. pk plots
for three different values of λe and a fixed λf for System-A. The
atermarking signal variance is taken to be a diagonal matrix
ith equal signal power, σ 2

e . We observe that the optimal policy
is a two threshold policy, which validates the theory presented in
Section 3.3. A higher λ means a stricter constraint on how much
e
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Fig. 7. Optimal policy for different λe and fixed λf for System-A. σ 2
e = 1.19.

Fig. 8. Optimal policy for different λf and fixed λe for System-A. σ 2
e = 1.19.

atermarking could be added, which gets reflected into higher
hs. On the other hand, a higher Ths means watermarking will be
dded for fewer samples. As discussed in Section 4.3.1, since the
dded watermarking has little effect on the FAR, the change in λe
oes not affect the threshold Thd much.
Fig. 8 shows the optimal decision variable u∗

d,k vs. pk plots for
hree different values of λf and a fixed λe for System-A. The wa-
ermarking signal variance is taken to be a diagonal matrix with
qual signal power, σ 2

e . A higher λf means a stricter constraint
n how much FAR could be allowed. Therefore, the increase in
f increases the threshold Thd. However, since Thd

≥ Ths, the
hange in λf does not affect the threshold Ths.

.0.2. Trial run
Fig. 9 illustrates how the control variables sk and dk, and the

ufficient statistics pk change with the time index k for a sample
rial run for System-A. The watermarking signal variance is taken
o be a diagonal matrix with equal signal power, σ 2

e . We have also
ndicated the attack start point as ‘‘change pt’’ in the plot. This
igure provides relevant insights into how the proposed method
orks. We can observe that only for a very few time instances
k ≥ Ths, and watermarking have been added before the attack.
uch parsimonious use of watermarking reduces the control cost
efore the attack. On the other hand, pk increases gradually after
he attack start point and eventually crosses the threshold Thd. In
ther words, pk ≥ Ths and watermarking have been added almost
ll the time after the change point, resulting in faster detection.

.0.3. ADD and FAR vs. σ 2
e

Fig. 10 shows the comparison between the plots of ADD and
AR vs. σ 2

e for two different values of λe for System-A. Σe is
2
aken to be a diagonal matrix with equal signal power, i.e., σe . For

12
Fig. 9. sk , dk and pk vs. k for a sample trial run for System-A. λe = 0.2, λf = 100
and σ 2

e = 1.19.

Fig. 10. ADD and FAR (%) vs. σ 2
e plots for two different λe and λf = 100, for

System-A.

each σ 2
e point, the thresholds Ths and Thd are derived using value

iterations from dynamic programming. Then, the ADD and FAR
are estimated by MC simulations using the derived thresholds. As
discussed before, higher λe reduces the usage of watermarking
before the attack by increasing the threshold Ths. The derived
approximate expression of ADD (60) reveals that the ADD does
not depend on λe or Ths directly. However, from (55) and (63),
we can say that the l̄ reduces with the reduction in watermarking,
which in turn increases ADD. Since l̄ is a small quantity compared
to ThD, the effect of the change of l̄ is small on ADD. To summarize,
lower λe results in slightly lower ADD. Similarly, the derived
approximate expression of FAR (61) reveals that the FAR does not
depend on λe or Ths also. That is why we observe very similar FAR
curves for two different values of λe in Fig. 10.

Fig. 11 compares the same set of plots as in Fig. 10, but for two
different values of λf and a fixed λe for System-A. As discussed
before, the increase in λf increases Thd. From (60) and (61), we
know that ADD and FAR are mainly dependent on the value of
ThD. ADD increases with the increase in ThD, whereas FAR reduces.
o summarize, ADD increases and FAR decreases with λf .
In both the figures, Figs. 10 and 11, ADD reduces with the

ncrease in the watermarking signal power, which is primarily the
esult of increased KLD (65). On the other hand, FAR (61) does
ot reduce much with the watermarking signal power since the
orrelation is weak. Higher watermarking signal power increases
he overshoot rnd to some extent, which in turn reduces ξ (64)
lightly.
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Fig. 11. ADD and FAR (%) vs. σ 2
e plots for two different λf and λe = 0.2, for

ystem-A.

Fig. 12. Comparison between the estimated values and theoretical values. ADD
and FAR (%) vs. σ 2

e plot for System-A. λf = 100 and λe = 0.2.

5.0.4. Add, FAR and ∆LQG theoretical values
Fig. 12 shows the ADD and FAR vs. σ 2

e plots for System-A,
where ADD and FAR are estimated by MC simulations and also
derived using Theorem 1 and Corollary 1.1. The watermarking
signal variance is taken to be a diagonal matrix with equal signal
power, i.e., σ 2

e . For each σ 2
e point, the thresholds Ths and Thd

are derived using dynamic programming value iterations. Fig. 13
shows the same set of plots as in Fig. 12 for System-B. The ADD
derived using MC simulations does not reduce at the same rate
as that of the approximate theoretical ADD with the increase
in σ 2

e . The reason is that the derived analytical expression of
ADD is asymptotically approximate. On the other hand, we have
selected the parameter values for the MC simulations so that ADD
remains small for the ease of simulation studies. Within the small
delay window after the change point for the MC simulations, the
increase in σ 2

e is not making much difference to the estimated
ADD. On the other hand, the simulation study shows that ξ (64)
does not change much for a small increase in σ 2

e . Therefore, from
(61), we can say FAR will only be affected to a small extent due
to the increase in σ 2

e . Therefore, we observe that the simulated
FAR and the theoretical FAR are in close agreement in Fig. 12. We
also see that the derived ADD from Theorem 1 is a better match
compared to the ADD derived from Corollary 1.1.

Fig. 14 shows the ∆LQG vs. σ 2
e plot, where ∆LQG is estimated

by MC simulation and also derived using the theory presented
in this paper for System-A using the same parameters as Fig. 12.
The watermarking signal variance is taken to be a diagonal matrix
with equal signal power, i.e., σ 2

e . From the derived expression of
∆LQG (72), it is evident that the control cost will increase with
the increase in watermarking signal power.
13
Fig. 13. Comparison between the estimated values and theoretical values. ADD
and FAR (%) vs. σ 2

e plot for System-B. λf = 100 and λe = 0.2.

Fig. 14. Comparison between the estimated values and theoretical values. ∆LQG
vs. σ 2

e plot for System-A. λf = 100 and λe = 0.2.

.0.5. Comparison with PW-Σe

Fig. 15 compares the ∆LQG vs σ 2
e plot from the proposed

ethod and PW-Σe assuming a diagonal Σe with equal power,
2
e , for System-A. For each σ 2

e point, the thresholds Ths and Thd

re derived using dynamic programming value iterations for the
roposed method, and the same thresholds are used for PW-Σe

for a fair comparison. From the derived expression of ∆̃LQG (76),
we predicted that we would get a large improvement in the
control cost since ρ and ANW both are small quantities. Also, the
difference will increase with σ 2

e as ∆LQGA increases with Σe. As
predicted from the theory discussed in Section 4.3.1, we observe
a large improvement in the control cost (approx. 99% reduction
in ∆LQG) for the proposed method in Fig. 15, which validates our
Claim 1.

We have shown ADD and FAR vs. σ 2
e plots for the proposed

ethod and PW-Σe using the same parameters as Fig. 15 in
ig. 16. From the derived expression of ∆ADD (77), we can com-
ent that the proposed method will take a longer time on av-
rage to detect the attack compared to PW-Σe. The difference is
ue to the slowly changing terms, l̄A and l̄P . Since the magnitude
f the slowly changing term usually remains small, the increase in
DD for the proposed method is also small. In Fig. 16, an average
ncrease of 35% (approx.) in ADD is observed at the same FAR
or the proposed method. On the other hand, as discussed in
ection 4.3.1, FAR will be the same for both the methods and the
ame is observed in Fig. 16. To summarize, Fig. 16 supports our
laims 2 and 3.
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Fig. 15. Comparison between proposed method and PW-Σe . ∆LQG vs. σ 2
e plot

or System-A. λf = 100 and λe = 0.2.

Fig. 16. Comparison between proposed method and PW-Σe . ADD and FAR vs.
2
e plot for System-A. λf = 100 and λe = 0.2.

.0.6. Comparison with PW-∆LQG
We have shown ADD and FAR vs. ∆LQG plots derived from MC

simulations for the proposed method and PW-∆LQG assuming a
diagonal Σe with equal power σ 2

e in Fig. 17 for System-A. For each
∆LQG point, the thresholds Ths and Thd are derived using dynamic
programming value iterations for the proposed method, and the
same thresholds are used for PW-∆LQG for a fair comparison. In
general, for the proposed method, Ths decreases and Thd increases
with the increase in ∆LQG or σ 2

e for fixed λe and λf . Since the
same thresholds are used for PW-∆LQG, the ADD increases with
∆LQG in the plot. As discussed in Section 4.3.2, since the proposed
method uses a higher watermarking signal variance at the same
control cost, the KLD for the proposed method is higher compared
to PW-∆LQG. Higher KLD for the proposed method results in
lower ADD, and the same characteristic is observed in Fig. 17.
Also, the usage of higher watermarking signal power increases
the overshoot statistic to a small extent, resulting in a small
decrease in FAR. To summarize, Fig. 16 supports our Claims 4 and
5.

5.0.7. Optimum Σe
As discussed in Section 4.4, the optimum Σ∗

e reduces the KLD
for a fixed upper bound on the ∆LQG, which in turn reduces the
ADD. We compare the ADD for the optimum Σ∗

e and the diagonal
Σe in Fig. 18 for System-A. For each σ 2

e point, the thresholds Ths

nd Thd are derived using dynamic programming value iterations
for the diagonal Σe case, and the same thresholds are used for the
ptimum Σ∗ case for a fair comparison. We observe an average
e

14
Fig. 17. Comparison between proposed method and PW-∆LQG. ADD and FAR
vs. ∆LQG plot for System-A. λf = 100 and λe = 0.3.

Fig. 18. Comparison between diagonal Σe and optimal Σ∗
e . ADD and FAR vs.

∆LQG plot for System-A. λf = 100 and λe = 0.3.

increase of 14% (approx.) in the estimated ADD for the optimal
Σ∗

e . For the optimal Σ∗
e , the watermarking signal power is mostly

oncentrated in one eigenvector direction, which results in higher
vershoot and a lower FAR.

.0.8. Comparison with a periodic watermarking scheme
We have compared the proposed evidence-based parsimo-

ious watermarking scheme with a periodic watermarking
cheme. The periodic watermarking scheme is adopted from Fang
t al. (2020) for our problem formulation. To fairly compare
oth methods, we have evaluated ADD and FAR by MC simu-
ations for the same ∆LQG values. Under both schemes, the pk
as been evaluated and compared with the same Thd value for
ttack detections. Note that Thd values are different for different
LQG values. However, watermarking has been added under the
roposed scheme if pk ≥ Ths. On the other hand, watermarking is
dded only once in a period for the other method, and the periods
re determined separately for each ∆LQG value. Since the periodic
atermarking scheme does use any existing evidence extracted

rom the set Ψk of all available information up to the kth time
nstant, the watermarking frequency remains the same before
nd after the attack. However, for the proposed scheme, the
atermarking frequency increases significantly after the attack
approx. 50 times), which reduces ADD and FAR, see Fig. 19.

. Conclusion

In this paper, we have studied the quickest data deception
ttack detection problem with constraints on FAR and ANW. Such
arsimonious use of watermarking helps to reduce the control
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Fig. 19. Comparison between proposed method and a periodic watermarking
scheme. ADD and FAR vs. ∆LQG plot for System-A. λf = 100 and λe = 0.3.

ost during normal system operations and maintain a moderate
etection performance. First, we have formulated the problem
s a stochastic optimal control problem under a Bayesian frame-
ork. Then, we have applied dynamic programming to find the
ptional policy. We have studied the optimal policy structure and
ound the optimal policy to be a two threshold policy on the
osterior probability of attack under a few practical assumptions.
e have also derived the asymptotic approximate expressions
f ADD and FAR applying non-linear renewal theory. The an-
lytical expression of ∆LQG and its relationship with ANW is
lso derived. Theoretical and simulation studies reveal significant
mprovement in reducing ∆LQG with a relatively small increase
n ADD compared to the method PW-Σe, where watermarking
s always present. The proposed method is also compared with
W-∆LQG, where both the methods have the same ∆LQG limit
nd found that the proposed method performs better in terms
f ADD and FAR. Furthermore, we have described a technique to
ind the optimal watermarking signal power that maximizes the
LD, which will improve the ADD.

ppendix A. Proof of Lemma 3

The following form of the LSRk is derived by taking logarithms
n both sides of (45), and combining both the conditions in (45)
sing an indicator function.

SRk = λk + k| log(1 − ρ)|

+ log

(
LSR0 +

k∑
i=1

(1 − ρ)i−1Ld,i exp(−λi)1{LSRi<ThS}

+

k∑
i=1

(1 − ρ)i−1Lb,i exp(−λi)1{LSRi≥ThS}

)
, where (86)

k =

k∑
i=1

log
(
La,i
)
1{LSRi≥ThS} +

k∑
i=1

log
(
Lc,i
)
1{LSRi<ThS}. (87)

he threshold ThS on LSRk is the same as the threshold Ths on pk.
hS is derived directly from (43) as given in (58). We rewrite λk
y adding and subtracting

∑k
i=1 log

(
La,i
)
1{LSRi<ThS} to the right

and side of (87) as follows,
k = Zk +

∑k
i=1 log

(
Lc,i

)
1{LSRi<ThS} −

∑k
i=1 log

(
La,i
)
1{LSRi<ThS},

here Zk is given in (56). Replacing the first λk in (86) by the
bove expression of λk and dividing the terms in Sk and lk, we
et (53). The proof that lk is slowly changing variable is provided
s follows.
15
The variable lk will be called slowly changing provided the
ollowing two conditions are satisfied, according to (Siegmund,
013):

1: k−1 max {| l1 |, . . . , | lk |} → 0, k → ∞ (88)

nd for every ϵ > 0, there exists k∗ and δ > 0, such that for all
≥ k∗

2: P
{
max
1≤i≤kδ

| lk+i − lk |> ϵ

}
< ϵ. (89)

k from (55) is represented as the summation of three terms,
k = l1,k + l2,k − l3,k, where l1,k = log

(
LSR0 +

∑k
i=1(1 − ρ)i−1Ld,i

exp(−λi)1{LSRi<ThS} , +
∑k

i=1(1 − ρ)i−1Lb,i exp(−λi)1{LSRi≥ThS}

)
,

2,k =
∑k

i=1 log
(
Lc,i
)
1{LSRi<ThS}, and l3,k =

∑k
i=1 log

(
La,i
)

{LSRi<ThS}. Taking absolute values on both sides of lk equation we
an write,

lk |≤| l1,k | + | l2,k | + | l3,k | . (90)

fter the attack start point, LSRk will gradually increase on av-
rage (from condition C6 in Theorem 1), and it will first cross
hS and then ThD as k → ∞. LSRk will remain below ThS for a
elatively short period of time compared to the time it takes to
ross ThD, since ThD

→ ∞. Therefore, l2,k and l3,k will converge
o some finite values, say L2 and L3, respectively, as k → ∞.
lso, exp (−λk) → 0 since λk → ∞ as k → ∞ from condition
6. Therefore, l1,k will also converge to a finite value, say L1, as
→ ∞. Now, from (90), we can say lk will also converge to a

inite value l, i.e., l ≤ L1+ L2+ L3 as k → ∞, which means lk will
atisfy condition C1.
We assume that at k = k1, LSRk crosses ThS . Therefore, for
≥ k1, we can write I2,k+i = l2,k =

∑k1
i=1 log

(
Lc,i
)
1{LSRi<ThS},

l3,k+i = l3,k =
∑k1

i=1 log
(
La,i
)
1{LSRi<ThS},

l1,k+i = log
(
LSR0 +

∑k1
i=1(1 − ρ)i−1Ld,i exp(−λi)× 1{LSRi<ThS}

+
∑k+i

j=1(1 − ρ)j−1Lb,j exp(−λj)1{LSRj≥ThS}

)
l1,k = log

(
LSR0 +

∑k1
i=1(1 − ρ)i−1Ld,i exp(−λi)1{LSRi<ThS}

+
∑k

i=1(1 − ρ)i−1Lb,i exp(−λi)1{LSRi≥ThS}

)
. Therefore,

lk+i − lk = l1,k+i − l1,k for k ≥ k1. (91)

As mentioned before, exp (−λk) → 0 as k → ∞, therefore, we
can say P

{
l1,k+i − l1,k

}
→ 0 for a sufficiently large k, say k∗, and

k∗
≥ k1. From (91), for k ≥ k∗, P {|lk+i − lk| > ϵ} = 0, which in

turn will satisfy condition C2.

Appendix B. Proof of Theorem 1

First, we will show that the conditions C1–C4 are satisfied
for the problem under study. Zk is a function of continuous
random variables, which take uncountably infinite values, so Zk
is non-arithmetic, thus satisfies the condition C1.

For condition C2, Z1 denotes the log-likelihood ratio (56) just
after the attack start point. For simplicity, we consider that the
attacker is present in the system from the beginning. Now, from
(56) and (33), we can write Z1 as

Z1 = −
1
2
log

⏐⏐Σ1,1
⏐⏐

|Σ0|
−

1
2

(
γ̃1 − µ1,1

)T
Σ−1

1,1

(
γ̃1 − µ1,1

)
+

1
2
γ̃ T
1 Σ−1

0 γ̃1 (92)

From (38), (40), and (42), we can say that all the elements of
(92) are either finite or having Gaussian distributions with finite
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m

F
s
T

F

L

L

L

eans and variances, which in turn ensures that E1
[
| Z1 |

2
]
is

finite.
Condition C3 is proven in Appendix A. From the expressions

of Σ0 (42) and Σγ̃ (67), we can say that under the practical
assumptions of the plant model and attacker’s system parameters
0 < E1

[
D
(

f e
1 , f0

)]
< ∞ from (65). In a similar way we can also

show that 0 < E1
[
D
(

f0, f e
1

)]
< ∞. Therefore, the condition C4 is

valid for the problem under study. The following is the proof of
Theorem 1.

Say, after the attack start point, at k = Γ the test statistics
LSRk will cross the threshold ThD at k = τ for the first time which
is equivalent to the test statistics pk crossing the threshold Thd.
To derive the expression of ADD, we assume, TD = τ − Γ . After
adding and subtracting ThD to (53) and rearranging the terms, it
will take the following form at k = TD,

STD = ThD
+
(
LSRTD − ThD)

− lTD . (93)

According to the nonlinear renewal theory (Siegmund, 2013), the
overshoot statistics of LSRTD − ThD can be approximated by the
overshoot statistics of STD , i.e., rnd = STD−ThD, provided ThD

→ ∞.
Moreover, the slowly changing term lk → l as k → ∞, where l
is a RV (Tartakovsky & Veeravalli, 2005). Taking expectations on
both sides of (93), we get

E1
[
STD
]

= ThD
+ r̄ − l̄ + o(1), (94)

where r̄ = limnd→∞ E1
[
rnd
]
and l̄ = limk→∞ E1 [lk]. The following

expression of E1
[
STD
]
is derived by taking expectations on both

sides of (54) (Tartakovsky & Veeravalli, 2005),

E1
[
STD
]

= E1 [TD] (E1 [Z1] + | log(1 − ρ)|) . (95)

Furthermore, E1 [Z1] can be approximated as E1
[
D
(

f e
1 , f0

)]
(65)

as explained in Naha et al. (2021b). Combining (94) and (95), and
rearranging the term we get (60), where ADD = E1 [TD].

A brief derivation of FAR is provided as follows. A detailed one
can be found in Tartakovsky and Veeravalli (2005). Using (43), we
can write

FAR = Eπ [1 − pτ ] = Eπ

[
1

exp (LSRτ )

1
ρ + exp (−LSRτ )

]
(96)

alse alarm will occur when LSRk crosses ThD during the normal
ystem operation. Therefore, exp (−LSRτ ) ≤ exp

(
−ThD

)
→ 0 as

hD
→ ∞. So, (96) can be approximated for ThD

→ ∞ as

AR =
1
ρ

exp
(
−ThD) Eπ

[
exp

(
ThD

− LSRτ

)]
(1 + o(1)) (97)

Eπ
[
exp

(
ThD

− LSRτ

)]
can be approximated by ξ using the over-

shoot rnd statistics (Siegmund, 2013) as given in (64). Replacing
Eπ
[
exp

(
ThD

− LSRτ

)]
by ξ in (97), we get (61).

Appendix C. System parameters

The following system parameters are used for simulation
study. ρ = 0.001.

System-A parameters:

A =

[
0.75 0.2
0.2 1.0

]
, B =

[
0.9 0.5
0.1 1.2

]
, C =

[
1.0 −1.0

]
,

Q = diag
[
1 1

]
, R = 1, W = diag

[
1 2

]
,

U = diag
[
0.4 0.7

]
, Aa = 0.5, and Qa = 7.5.
16
System-B parameters:

A =

⎡⎢⎣0.968 0 0.082 0
0 0.978 0 0.064
0 0 0.917 0
0 0 0 0.935

⎤⎥⎦ , B =

⎡⎢⎣0.164 0.004
0.002 0.124

0 0.092
0.060 0

⎤⎥⎦ ,

C =

[
5 0 0 0
0 5 0 0

]
, R = diag

[
0.5 0.5

]
,

Q = diag
[
0.25 0.25 0.25 0.25

]
, U = diag

[
2 2

]
,

W = diag
[
5 5 1 1

]
, Qa = diag

[
6 6

]
,

Aa = diag
[
0.4 0.1 0.1 0.7

]
.
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