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Security Allocation in Networked Control
Systems under Stealthy Attacks
Anh Tung Nguyen , André M. H. Teixeira , Alexander Medvedev

Abstract— This paper considers the problem of security
allocation in a networked control system under stealthy
attacks. The system is comprised of interconnected sub-
systems represented by vertices. A malicious adversary
selects a single vertex on which to conduct a stealthy data
injection attack with the purpose of maximally disrupting a
distant target vertex while remaining undetected. Defense
resources against the adversary are allocated by a defender
on several selected vertices. First, the objectives of the
adversary and the defender with uncertain targets are for-
mulated in a probabilistic manner, resulting in an expected
worst-case impact of stealthy attacks. Next, we provide a
graph-theoretic necessary and sufficient condition under
which the cost for the defender and the expected worst-
case impact of stealthy attacks are bounded. This condition
enables the defender to restrict the admissible actions to
dominating sets of the graph representing the network.
Then, the security allocation problem is solved through
a Stackelberg game-theoretic framework. Finally, the ob-
tained results are validated through a numerical example
of a 50-vertex networked control system.

Index Terms— Cyber-physical security, networked con-
trol system, Stackelberg game, stealthy attack.

I. INTRODUCTION

Networked control systems are ubiquitous in modern society
and are exemplified by power grids, transportation, and water
distribution networks. These systems, utilizing non-proprietary
information and communication technologies, such as public
Internet and wireless communication, are exposed to the threat
of cyber attacks [1]–[3], with potentially severe financial
and societal consequences. For instance, an Iranian industrial
control system and a Ukrainian power grid have witnessed the
catastrophic consequences of malware such as Stuxnet in 2010
[2] and Industroyer in 2016 [3], respectively. Thus, in light
of these alarming realities, the issue of security has acquired
unprecedented significance in the realm of control systems.

In terms of cyber attacks on control systems, deception
attacks that undermine the integrity of control systems have
emerged as an area of increasing scholarly interest. For ex-
ample, Pang and Liu [4] have proposed an encryption-based
predictive control mechanism to counteract and mitigate such
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attacks. Another form of deception attacks, replay attacks, has
been unmasked by physical watermarking [5]. Meanwhile, the
development of stealthy attacks on control systems has been
made to evade the most advanced detection schemes [6]–[9].

Upon review of the above studies [4]–[9], it is noticed
that they have concentrated on secure estimation and secure
control from the perspective of either the defender or the
adversary. Nonetheless, it is crucial to note that both parties
are confronted with similar challenges, as the defender has
limited resources to counteract malicious activities, while the
adversary also faces energy and detectability constraints when
executing attacks. As a result, addressing the security problem
within a unified framework that encompasses both the defender
and the adversary is of utmost importance.

Game theory offers a unified framework to consider the
objectives and actions of both strategic players, namely the
defender and the adversary [10]. It also allows us to deal
with the robustness and security of cyber-physical systems
within the common well-defined framework of H∞ robust
control design [11]. Further, many other concepts of games
describing networked systems subjected to cyber attacks such
as matrix games [12]–[14], dynamic games [15], stochastic
games [16], and network monitoring games [17] have been
studied. Recent studies [12], [18], [19] have utilized the
common concept of zero-sum games to address the problem
of input attacks on cyber-physical systems. Control systems
exposed to cyber attacks have been extensively investigated
through game theoretic approaches [15]–[17]. However, these
approaches have not accounted for the deployment of detectors
in an effort to improve the detection of cyber attacks. This
creates a significant knowledge gap that must be addressed in
order to enhance security measures.

One such effort to close the aforementioned gap has been
presented in a game-theoretic formulation outlined by Pirani
et al. [20]. The game payoff in [20] has been formulated
by combining the maximum L2 gains of multiple outputs
with respect to a single input representing the attack signal.
On the one hand, these multiple L2 gains are evaluated
separately and thus may be attained for different input signals.
Further, the utilization of a maximum gain for characterizing
the detectability corresponds to an optimistic perspective,
where the adversary attempts to maximize the energy of the
detection output, instead of the opposite. Therefore, in order
to address the critical issue of cyber security and develop
a security metric against cyber attacks, it is imperative to
thoroughly investigate the optimal placement of sensors in a
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Fig. 1: An illustration of a networked control system with the
(green) target vertex. While the defender places sensors at the
(blue) monitor vertices, the adversary conducts a stealthy data
injection attack on the (red) attack vertex.

networked system to minimize the impact of cyber attacks
while maintaining maximum detectability.

Additionally, the above existing studies [12], [13], [15],
[17], [19], [20] considered the security problem where the
defender and the adversary select their actions simultaneously.
However, this formulation is not always applicable in practical
situations where an adversary attacks after observing the
action of the defender. To deal with this scenario, a game-
theoretic Stackelberg framework [21] offers a more practical
solution [14], [22], [23]. In the framework, after analyzing
possible attack scenarios, the defender called the leader, has
the power to select and announce their action first, knowing
that the malicious adversary bases their actions on the leader’s
decision. Then, the malicious adversary called the follower,
finds the best response to the defender’s action.

In this paper, we consider a continuous-time networked
control system, associated with an undirected connected graph,
under stealthy attacks involving two strategic agents: a mali-
cious adversary and a defender. The system is comprised of
multiple interconnected one-dimensional subsystems, referred
to as vertices. The purpose of the adversary is to maliciously
degrade a distant target vertex without being detected. To this
end, the adversary selects one vertex on which to launch a
stealthy data injection attack on its input. Meanwhile, the de-
fender allocates defense resources by selecting a set of monitor
vertices to measure their outputs with the aim of alleviating
the attack impact. Given the strategic nature of both agents, we
investigate the optimal selection of the monitor vertices using
the Stackelberg game-theoretic approach described above. By
leveraging the concept of the Stackelberg game in [21], we
can elucidate the complex interplay between the two agents
and identify their best actions. Figure 1 visualizes the above-
defined game in a networked control system. The contributions
of this paper are the following:

1) A novel defense cost, the expected output-to-output gain,
is proposed to capture the expected worst-case impact

of stealthy attacks with an uncertain target vertex.
2) The security allocation problem is cast in a Stackel-

berg game-theoretic framework with the defender as the
leader and the malicious adversary as the follower.

3) We propose a control design that fulfills a graph-
theoretic necessary and sufficient condition under which
the boundedness of the defense cost is guaranteed.

4) Leveraging the uncertainty of the target vertex, we show
that the necessary and sufficient condition in 3) restricts
the admissible choices of monitor sets to be dominating
sets of the graph.

5) The advantage of the proposed security allocation
scheme is highlighted through the alleviation of the
computational complexity.

The remainder of this paper is organized as follows. Section
II describes a networked control system under stealthy attacks
and the adversarial modeling. Then, Section III presents how
a malicious adversary and a defender design their strategies.
Thereafter, Section IV investigates the boundedness of the
defense cost and the worst-case impact of stealthy attacks
caused by the malicious adversary. The investigation affords
us to restrict the admissible actions of the defender, which
is presented at the end of Section IV. In Section V, by
employing the Stackelberg game-theoretic framework, we
propose two solutions to find the optimal actions for the
malicious adversary and the defender. In Section VI, the
effectiveness of the proposed security allocation scheme in
terms of computational complexity is highlighted, especially
in large-scale networks. Section VII presents a numerical
example to validate the obtained results while Section VIII
concludes the paper. We conclude this section by providing
the notation to be used throughout this paper.

Notation: the set of real positive numbers is denoted
as R+ ; Rn and Rn×m stand for sets of real n-dimensional
vectors and n-row m-column matrices, respectively. A vector
with the i-th element set to one and the other elements set
to zero is denoted ei ∈ Rn. For a set A, |A| stands for the
set cardinality. For a given discrete random variable y ∈ Dy

having a probability mass function p, the expected value of a
function f(y) is denoted as Ey∼p [f(y)] =

∑
y∈Dy

p(y)f(y).
A continuous linear time-invariant (LTI) system with the state-
space model ẋ(t) = Āx(t) + B̄u(t), y(t) = C̄x(t) + D̄u(t)
is denoted as Σ̄ ≜ (Ā, B̄, C̄, D̄). The space of square-
integrable functions is defined as L2 ≜

{
f : R+ →

R | ∥f∥2L2[0,∞] < ∞
}

and the extended space is defined as
L2e ≜

{
f : R+ → R | ∥f∥2L2[0,T ] < ∞, ∀ 0 < T < ∞

}
.

The notation ∥x∥2L2
is used as shorthand for the norm

∥x∥2L2[0,T ] ≜ 1
T

∫ T

0
∥x(t)∥22 dt if the time horizon [0, T ] is

clear from the context. Let G ≜ (V, E , A) be an undirected
graph with the set of N vertices V = {1, 2, ..., N}, the set of
edges E ⊆ V × V , and the adjacency matrix A = [aij ]. For
any (i, j) ∈ E , i ̸= j, the element of the adjacency matrix aij
is positive, and with (i, j) /∈ E or i = j, aij = 0. The degree
of vertex i is denoted as ∆i ≜

∑n
j=1 aij and the degree

matrix of graph G is defined as ∆ ≜ diag
(
∆1,∆2, . . . ,∆N

)
,
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where diag stands for a diagonal matrix. The Laplacian
matrix is defined as L = [ℓij ] ≜ ∆ − A. Further, G is
called an undirected connected graph if and only if matrix
A is symmetric and the algebraic multiplicity of zero as an
eigenvalue of L is one. The set of all neighbours of vertex
i is denoted as Ni = {j ∈ V | (i, j) ∈ E}. We denote the
subset of V excluding a vertex i as V−i ≜ V \ {i}.

II. PROBLEM DESCRIPTION

We first describe a networked control system under stealthy
attacks in the presence of a defender and a malicious adversary.
Then, the malicious goal and the attack strategy are modeled
in the remainder of this section.

A. Networked control system under stealthy attacks
Consider an undirected connected graph G ≜ (V, E , A) with

N vertices, the state-space model of a one-dimensional vertex
i is described:

ẋi(t) = ui(t), i ∈ V =
{
1, 2, . . . , N

}
, (1)

where xi(t) ∈ R and ui(t) ∈ R are the state and the local
control input of vertex i, respectively. Each vertex i ∈ V is
controlled by the control law:

ui(t) = −θixi(t) +
∑
j∈Ni

(
xj(t)− xi(t)

)
, (2)

where θi ∈ R+ is an adjustable self-loop control gain at
vertex i. This self-loop control gain will be used to improve
the security of the entire network later in this paper. For
convenience, let us denote x(t) as the state of the entire
network, x(t) ≜

[
x1(t), x2(t), . . . , xN (t)

]⊤
.

To get prepared for facing malicious activities, the defender
selects a subset of the vertex set V as a set of monitor vertices,
denoted as M ≜ {m1,m2, . . . ,m|M|}, on which to place
a sensor at each selected monitor vertex. Due to practical
reasons, the number of utilized sensors should be constrained.
Let us denote ns as the sensor budget that is the maximum
number of utilized sensors, i.e., |M| ≤ ns.

Given the defense strategy, the malicious adversary selects a
vertex a ∈ V on which to conduct an additive time-dependent
attack signal ζ(t) ∈ R, where ζ ∈ L2e, at its input as follows:

ua(t) = −θaxa(t) +
∑
j∈Na

(
xj(t)− xa(t)

)
+ ζ(t). (3)

Based on the above descriptions of the network, the defense
strategy, and the malicious plan, the system model (1) under
the control law (2)-(3) can be rewritten in the presence of the
attack signal at the attack vertex a with output of the target
vertex ρ and outputs observed at the monitor vertices mk ∈ M
as follows:

ẋ(t) = −L̄x(t) + eaζ(t), (4)

yρ(t) = e⊤ρ x(t), (5)

yM(t) = C⊤
Mx(t), (6)

where CM ≜ [em1
, em2

, . . . , em|M| ], L̄ ≜ L + Θ, and Θ ≜
diag(θ1, θ2, . . . , θN ). The Laplacian matrix L associated with

the undirected connected graph G and θi ∈ R+, ∀i ∈ V result
in that all the eigenvalues of the matrix L̄ are positive real.
This property of L̄ ensures that the state of the network x(t)
asymptotically converges to the origin in the attack-free case,
affording us to employ the following assumption.

Assumption 1: The system (4) is at its equilibrium xe = 0
before being affected by the attack signal ζ(t). ◁

Remark 1: The system (4)-(6) is guaranteed to be asymptot-
ically stable in the attack-free case. Unfortunately, the stability
of an attack-free system is not enough to determine the impact
of stealthy additive false data injection attacks (3), which are
mainly studied in this paper. The attack impact needs to be
evaluated through the invariant zeros of the system (4)-(6),
which will be described in Section IV. ◁

B. Stealthy attack model
The purpose of the malicious adversary is to maximally

disrupt a distant target vertex (denoted as ρ) by compromising
an attack vertex a, while remaining stealthy to the defender
(see the discussion on the importance of the stealthiness in
[13, Sec. II.E]). This attack strategy is motivated by existing
scenarios considered in the literature such as a single target
vertex in networked control systems [20], malicious control in
competitive power systems [24], Crossfire attacks in computer
security [25], and adversarial reachable sets [26], where the
malicious goal is to impact other vertices beyond the initially
compromised vertex. Based on these motivating examples, we
employ the following assumption.

Assumption 2: For any given attack vertex a, the target
vertex ρ is distinct from the attack vertex a, i.e., ρ ∈ V−a.

The above malicious purpose allows us to mainly focus
on the stealthy data injection attack that will be defined
in the following. Consider the above structure of the con-
tinuous LTI system (4)-(6), which we denote as ΣρM ≜
(−L̄, ea, [eρ, CM]⊤, 0), with the monitor outputs ymk

(t) =
e⊤mk

x(t), ∀mk ∈ M. The input signal ζ(t) of the system
ΣρM is called the stealthy data injection attack if the monitor
outputs satisfy ∥ymk

∥2L2
≤ δmk

, for all mk ∈ M, in which
δmk

> 0 is given for each corresponding monitor vertex mk

and called an alarm threshold. This means that the adversary
is said to be detected if there exists at least one monitor vertex
mk ∈ M whose output energy crosses its corresponding
alarm threshold δmk

. The impact of the stealthy data injection
attack is measured via the output energy of the target vertex
ρ over the horizon [0, T ], i.e., ∥yρ∥2L2[0,T ]. This performance
specification is commonly used in the literature on secure
control systems [5], [8], [10], [18], [20] where it captures
the average impact on the target in a certain time interval.
The long time horizon considered in the attack impact is
motivated by a common assumption in the literature that
adversaries aim for a long-term malicious impact after they
have made a significant investment to infiltrate the network and
acquire system parameters [13]. Further, akin to the H−/H∞
metrics [11] and the LQ controller design, designing problems
with energy costs and linear systems can be formulated into
tractable problems.

The worst-case impact of the stealthy data injection attack
conducted by the malicious adversary on the target will be

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2024.3462546

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on September 19,2024 at 06:28:03 UTC from IEEE Xplore.  Restrictions apply. 



4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

further investigated. Then, this worst-case attack impact will
be utilized to formulate the objectives of the adversary and the
defender in the following section.

Remark 2: In the absence of Assumption 2, the resulting
allocation problem based on (7) has a single trivial solution
that is to monitor all the vertices. Assumption 2 overcomes this
limitation and results in richer and more interesting allocation
problems in the following sections. Section V discusses this
matter in more detail.

III. ATTACK AND DEFENSE STRATEGIES

In the first two parts of this section, the malicious and
defense objectives are formulated to design the strategies for
the malicious adversary and the defender. In the remainder
of this section, the security allocation methodology that is the
main focus of this paper is presented to show how the defender
designs their defense strategy.

A. Attack strategy

Practically, the malicious adversary designs their attack poli-
cies after acquiring enough system parameters and observing
defense strategies. Given the set of monitor vertices M, the
malicious adversary selects an attack vertex a that maximizes
the following worst-case impact of stealthy attacks on the
distant target vertex ρ ∈ V−a:

Jρ(a,M) ≜ sup
x(0)= 0, ζ ∈L2e

∥yρ∥2L2
(7)

s.t. ∥ymk
∥2L2

≤ δmk
, ∀mk ∈ M,

(4) − (6).

The dual problem of (7) is given as follows:

inf
γmk

>0

[
sup

x(0)= 0, ζ ∈L2e

(
∥yρ∥2L2

−
∑

mk∈M
γmk

∥ymk
∥2L2

)
+

∑
mk∈M

γmk
δmk

]
(8)

s.t. (4) − (6).

The dual problem (8) is bounded only if ∥yρ∥2L2
−∑

mk∈M γmk
∥ymk

∥2L2
≤ 0, ∀ζ ∈ L2e and x(0) = 0, which

results in the following minimization problem:

Jρ(a,M) = min
γmk

>0

∑
mk∈M

γmk
δmk

(9)

s.t. ∥yρ∥2L2
−

∑
mk∈M

γmk
∥ymk

∥2L2
≤ 0,

(4) − (6), x(0) = 0, ∀ζ ∈ L2e.

The strong duality can be proven by utilizing S-Procedure
[27, Ch. 4]. Recalling the key results in dissipative system
theory for linear systems with quadratic supply rates [28], the
optimization problem (9) can be translated into the following

semidefinite programming (SDP) problem:

Jρ(a,M) = min
γmk

>0, P=P⊤≥0

∑
mk∈M

γmk
δmk

(10)

s.t.
[

−L̄P − PL̄ Pea
e⊤a P 0

]
+

[
eρ
0

] [
e⊤ρ 0

]
−

∑
mk∈M

γmk

[
emk

0

] [
e⊤mk

0
]
≤ 0.

It is worth noting that to guarantee the existence of a
solution to the optimization problem (10), we need to show
the boundedness of the optimization problem (7) [29], which
will be discussed in Section IV. The following subsection
presents how the defender designs their defense strategy
without knowing the exact target of the malicious adversary.

Remark 3: In a similar scenario, another objective function
based on L2-gain for both the adversary and the defender
has been proposed in [20, Sec. 3]. The objective function in
[20, Sec. 3] was formulated in terms of the maximal L2-gains
from the attack vertex a to the target vertex ρ and from the
attack vertex a to the monitor vertex mk. More specifically,
the objective function in [20, Sec. 3] is given by

Wρ(a,mk) ≜ sup
∥ζ∥L2

̸=0

∥yρ∥2L2

∥ζ∥2L2

−λ sup
∥ζ∥L2

̸=0

∥ymk
∥2L2

∥ζ∥2L2

, (λ ≥ 0).

The above objective Wρ(a,mk) also considers two different
outputs yρ(t) and ymk

(t), but note that the output energies are
maximized separately, thus leading to two different optimal
input signals ζ(t) in general cases. By contrast, our objective
function (7) considers the worst-case impact of stealthy attacks
that is simultaneously characterized by the multiple outputs
yρ(t) and ymk

(t) with respect to a single input signal ζ(t). ◁

B. Defense strategy
We assume that the defender does not know the exact

location of a distant target vertex ρ that parameterizes the
attack policy (7). This assumption closely aligns with practical
situations where the defender seldom foresees the exact inten-
tions of malicious adversaries. To design a suitable defense
strategy despite such uncertainty, the defender can conduct a
risk assessment [30] to assess and reason about the impact
and the likelihood of potential malicious activities (namely
pairs of attack and target vertices in our context). To this end,
the defender considers the malicious target, represented by the
location of the vertex ρ, in a probabilistic manner. For a given
attack vertex a, the uncertain target vertex ρ is characterized
probabilistically through a conditional belief πa(ρ), which
is assumed to be positive ∀ρ ∈ V−a. This belief model
aligns partially with the concept of attack types in games
with incomplete information [13], [31]. Therefore, instead of
minimizing (7) as in games with complete information, the
defender utilizes the above-defined conditional belief πa(ρ) to
consider an expected worst-case impact of stealthy attacks as
a proxy for (7). Then, the defender desires to choose a set
of monitor vertices M that minimizes the following defense
cost:

R(a,M) ≜ c(|M|) +Q(a,M), (11)
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where the expected worst-case impact of stealthy attacks is
defined as:

Q(a,M) ≜ Eρ∼πa [Jρ(a,M)]

=
∑

ρ∈V−a

πa(ρ)Jρ(a,M), (12)

and c(|M|) is a cost for the number of utilized sensors, which
is assumed to be bounded for any monitor set M ⊆ V . In the
following subsection, we present how the defender plans their
defense strategy by addressing the above-defined objectives
(11)-(12).

C. Security Allocation Methodology

The security allocation entails that the defender strategically
allocates defense resources to monitor specific vertices, aiming
to enhance the security level of the network. The strategic
selection of a monitor set is computed offline in the design
phase, where the defender simulates and evaluates all the
possible attack scenarios in order to seek the best monitor
set that minimizes the defense cost (11).

To accomplish the design, the defender first evaluates the
defense cost (11) based on the potential target of the malicious
adversary, which is generally uncertain, in a probabilistic
way (see more discussions in [13, Sec. II.E]). Secondly, the
defender changes the attack scenario to other vertices and
repeats the investigation conducted in the previous step for all
potential attack vertices. In the end, the defender obtains the
result of the enumeration of all the action scenarios, which
is in line with other Stackelberg security games found in
the literature [14]. Finally, the result from the enumeration
enables the defender to find the best monitor set, which will
be discussed in Section V.

In the steps mentioned above, the defender can neglect
monitor sets that yield unbounded defense costs, reducing the
defender’s action space. This reduction saves computing re-
sources and fosters the design procedure. From (7), Jρ(a,M)
is non-negative for every pair of attack vertex a and monitor
set M. Thus, the defense cost R(a,M) and the expected
worst-case impact of stealthy attacks Q(a,M) are bounded
when the worst-case impact of stealthy attacks (7) on every
target vertex ρ ∈ V−a is bounded. In the following section, we
will present how the defender finds a set of admissible monitor
vertices M that guarantees the boundedness of the worst-case
impact of stealthy attacks (7) for every attack vertex.

IV. CHARACTERIZING THE SET OF MONITOR VERTICES

In this section, we first provide an upper bound of the
worst-case impact of stealthy attacks (7). The boundedness of
this upper bound is guaranteed by a necessary and sufficient
condition. By analyzing this upper bound, we provide a graph-
theoretic necessary and sufficient condition under which the
cost (11) and the expected worst-case impact (12) are bounded.
This condition, then, allows us to limit the admissible actions
of the defender. In the remainder of this section, we show how
the admissible actions of the defender are characterized.

A. Evaluating the worst-case impact of stealthy attacks
The following lemma states a key property of the worst-case

impact of stealthy attacks (7).
Lemma 1: Consider the continuous LTI system ΣM =

(−L̄, ea, C
⊤
M, 0) with a given attack vertex a, a target vertex

ρ ∈ V−a, and a non-empty monitor vertex set M, the worst-
case impact (7) has an upper bound:

Jρ(a,M) ≤ Jρ(a,M), (13)

where

Jρ(a,M) = min
mk∈M

 sup
x(0)=0, ζ∈L2e

∥yρ∥2L2

s.t. ∥ymk
∥2L2

≤ δmk

 .◁

(14)
Proof: See Appendix I.

Lemma 1 enables us to guarantee the boundedness of the
worst-case impact of stealthy attacks (7) through considering
the isolated worst-case impact of stealthy attacks (14) at a
single monitor vertex mk ∈ M. Next, at the first stage
in the investigation into the boundedness of the worst-case
impact of stealthy attacks (14), we adopt a result in [29,
Th. 2]. The boundedness of the optimization problem (14)
is related to the invariant zeros of Σρ ≜ (−L̄, ea, e

⊤
ρ , 0) and

Σmk
≜ (−L̄, ea, e

⊤
mk

, 0), which are defined as follows.
Definition 1 (Invariant zeros): Consider the strictly proper

LTI system Σ̄ ≜ (Ā, B̄, C̄, 0) where Ā, B̄, and C̄ are real
matrices with appropriate dimensions. A tuple (λ̄, x̄, ḡ) ∈ C×
CN × C is a zero dynamics of Σ̄ if it satisfies[

λ̄I − Ā −B̄
C̄ 0

] [
x̄
ḡ

]
=

[
0
0

]
, x̄ ̸= 0. (15)

A finite λ̄ is called a finite invariant zero of the system Σ̄.
The strictly proper system Σ̄ always has at least one invariant
zero at infinity [32, Ch. 3]. Further, invariant zeros that have
positive real parts are called unstable invariant zeros. ◁

More specifically, to guarantee the boundedness of the
worst-case impact of stealthy attacks (14), let us state the
following lemma.

Lemma 2 ( [29, Th. 2]): Consider the following contin-
uous LTI systems Σρ ≜ (−L̄, ea, e

⊤
ρ , 0) and Σmk

≜
(−L̄, ea, e

⊤
mk

, 0), ∀mk ∈ M. The optimization problem (14)
is bounded if, and only if, there exists at least one system Σmk

such that its unstable invariant zeros are also invariant zeros
of Σρ. ◁

Proof: Follows directly the result in [29, Th. 2].
The result in Lemma 2 prompts us to investigate invariant

zeros of Σmk
. Let us adopt the following lemma from our

previous work [19] that considers finite invariant zeros of Σmk
.

Lemma 3 ( [19, Lem. 4.4]): Consider a networked control
system associated with an undirected connected graph G ≜
(V, E , A), whose closed-loop dynamics is described in (4).
Suppose that the networked control system is driven by the
stealthy data injection attack at a single attack vertex a, and
observed by a single monitor vertex mk, resulting in the state-
space model Σmk

≜ (−L̄, ea, e
⊤
mk

, 0). Then, there exist self-
loop control gains θi, ∀i ∈ {1, 2, . . . , N}, in (2) such that
Σmk

has no finite unstable invariant zero. ◁
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Proof: See Appendix II.
Lemma 3 enables us to carefully design the control law

(2), i.e. select θi, such that for every pair of an input vertex
a and an output vertex mk, the corresponding LTI system
Σmk

= (−L̄, ea, e
⊤
mk

, 0) has no unstable invariant zero.
Hence, it leaves us to investigate infinite invariant zeros of
systems Σmk

, ∀mk ∈ M in the following subsection.

B. Infinite invariant zeros
We investigate the infinite invariant zeros of the systems Σρ

and Σmk
, ∀mk ∈ M. In the investigation, we make use of

known results connecting infinite invariant zeros mentioned in
Definition 1 and the relative degree of a linear system, which
is defined below.

Definition 2 (Relative degree [33, Ch. 13]): Consider a
strictly proper LTI system Σ̄ ≜ (Ā, B̄, C̄, 0) with Ā ∈ Rn×n,
B̄, and C̄ are real matrices with appropriate dimensions. The
system Σ̄ is said to have a relative degree r (1 ≤ r ≤ n) if
the following conditions satisfy

C̄ĀkB̄ = 0, 0 ≤ k < r − 1,

C̄Ār−1B̄ ̸= 0. (16)

◁
Remark 4: Let H̄(s) = C̄(sI − Ā)−1B̄ be the transfer

function of the above system Σ̄. The relative degree r of the
system Σ̄ defined in Definition 2 is also the difference between
the degrees of the denominator and the numerator of H̄(s)
[33], which in turn corresponds to the degree of the infinite
zero if Σ̄ is minimal realization [32, Ch. 3]. ◁

Based on Definition 2, let us denote r(ρ,a) and r(mk,a) as the
relative degrees of Σρ and Σmk

, ∀mk ∈ M, respectively. In
the scope of this study, we have assumed that the attack signal
ζ(t) in (3) has no direct impact on the outputs (5) and (6),
resulting in strictly proper systems Σρ and Σmk

. This implies
that the relative degrees r(ρ,a) and r(mk,a) of the systems Σρ

and Σmk
are positive, yielding their infinite invariant zeros. Let

us state the following theorem that considers infinite invariant
zeros of the systems Σρ and Σmk

to provide a necessary and
sufficient condition under which the boundedness of the worst-
case impact of stealthy attacks (14) is guaranteed.

Theorem 1: Consider the strictly proper LTI systems Σρ ≜
(−L̄, ea, e

⊤
ρ , 0) and Σmk

≜ (−L̄, ea, e
⊤
mk

, 0), ∀mk ∈ M, in
which the systems have the same stealthy data injection attack
input (3) at a single attack vertex a ∈ V−ρ but different output
vertices (5)-(6), i.e., ρ for Σρ and mk for Σmk

. Suppose the
systems Σρ and Σmk

have relative degrees r(ρ,a) and r(mk,a),
respectively. Then, the worst-case impact of stealthy attacks
(14) is bounded if, and only if, there exists at least one system
Σmk

such that the following condition holds

r(mk,a) ≤ r(ρ,a). (17)

◁
Proof: See Appendix III.

Given an arbitrary attack vertex a and a distant target vertex
ρ ∈ V−a, Theorem 1 hints a solution to monitoring malicious
activities. The defender chooses a non-empty monitor set
M ⊂ V such that there exists at least one monitor vertex

mk ∈ M that fulfills the condition (17). The following
subsection presents how to find such a monitor set M.

Remark 5: Let us consider the following continuous LTI
system ΣM = (−L̄, ea, C

⊤
M, 0) where its input is at the

vertex a and its outputs are at monitor vertices mk ∈ M.
By employing the definition of the relative degree of single-
input-multiple-output systems, adapted from [34], the relative
degree of the system ΣM is the least relative degree from its
input to its single monitor vertex. Thus, we need to find at least
one monitor vertex mk such that it fulfills the condition (17),
resulting in the boundedness of (14). This result eventually
allows us to guarantee that the worst-case impact of stealthy
attacks in (7) is bounded according to the property in (13). ◁

C. Admissible monitor sets and dominating sets
Consider a subset M ⊂ V where its cardinality is not

greater than the sensor budget ns, the maximum number of
available sensors, i.e., M = {m1,m2, . . . ,m|M|} and |M| ≤
ns. Inspired by the discussions in the previous subsection, a
monitor set M is admissible if it contains at least one monitor
vertex mk ∈ M such that this vertex mk fulfills the necessary
and sufficient condition (17) in Theorem 1. This set M is
called a dominating set which is defined below.

Definition 3 (Dominating set): Given an undirected graph
G ≜ (V, E , A), a subset of the vertex set D ⊂ V is called a
dominating set if, for every vertex u ∈ V \D, there is a vertex
v ∈ D such that (u, v) ∈ E . ◁

The following lemma presents a necessary and sufficient
condition that allows us to examine whether a subset of the
vertex set V is a dominating set.

Lemma 4: Consider an undirected graph G ≜ (V, E , A), a
subset M ⊂ V is a dominating set of V if, and only if, the
following condition holds

e⊤i C(M) > 0, ∀i ∈ V, (18)

where C(M) = (A+ I)
∑

mk∈M emk
. ◁

Proof: See Appendix IV.
By investigating all the subsets of V , we can find all the

dominating sets which fulfill the condition (18). Let us make
use of the following assumption.

Assumption 3: The vertex set V has at least one dominating
set with a cardinality of at most ns. ◁

Based on Assumptions 2-3 and the above results in Lemma 1
and Theorem 1, we are now ready to state the following the-
orem that provides a graph-theoretic necessary and sufficient
condition under which the cost (11) and the expected worst-
case impact of stealthy attacks (12), caused by the stealthy data
injection attack at an arbitrary attack vertex a, are bounded.

Theorem 2: Suppose that Assumptions 2-3 hold. Consider
the networked control system (4) associated with an undirected
connected graph G where the system has the stealthy data
injection attack (3) at the input of an arbitrary attack vertex
a and outputs (6) at monitor vertices mk ∈ M. The defense
cost R(a,M) in (11) and the expected worst-case impact of
stealthy attacks Q(a,M) in (12) are bounded if, and only if,
the monitor set M is a dominating set of G. ◁

Proof: Let us consider the following continu-
ous LTI systems Σρ ≜ (−L̄, ea, e

⊤
ρ , 0) and Σmk

≜
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(−L̄, ea, e
⊤
mk

, 0), ∀mk ∈ M. The systems have the same
stealthy data injection attack at the input of an arbitrary
attack vertex a but Σρ has an output at an arbitrary target
vertex ρ ∈ V−a and Σmk

has an output at monitor vertex
mk ∈ M. Based on Definition 2, Assumption 2 guarantees that
the relative degree of Σρ is not lower than one, i.e., r(ρ,a) ≥ 1.

We begin by providing sufficiency. Assumption 3 ensures
that there exists at least one dominating set that has at most
ns elements. Therefore, the defender selects the monitor set
M as one of such dominating sets. According to Definitions 2-
3, there exists at least one system Σmk

, where its input is at an
arbitrary attack vertex a and its output is at the monitor vertex
mk (mk ∈ M), such that its relative degree is not greater than
one, i.e., r(mk,a) ≤ 1. Based on the above observation, one
has r(mk,a) ≤ 1 ≤ r(ρ,a), fulfilling (17). From the results
in Theorem 1 and Lemma 1, the satisfaction of (17) allows
us to guarantee the boundedness of the worst-case impact of
stealthy attacks (7). Therefore, the defense cost R(a,M) and
the expected worst-case impact of stealthy attacks Q(a,M)
are bounded based on their definitions in (11)-(12).

For necessity, let us present a contradiction argument by
assuming that the defense cost R(a,M) and the expected
worst-case impact of stealthy attacks Q(a,M) are bounded
while the monitor set M is not a dominating set of G. Based
on the definitions of Q(a,M) and R(a,M) in (11)-(12), they
are bounded if, and only if, Jρ(a,M) is bounded for all
pairs of ρ and a. Since the attack vertex a can be chosen
arbitrarily and the monitor set M is not a dominating set, the
attack vertex a can be chosen such that it does not belong
to M and none of its neighbors belongs to M, resulting in
r(mk,a) > 1 ∀mk ∈ M. On the other hand, the adversary
considers all the possibilities of the target vertex ρ including
(ρ, a) ∈ E , resulting in r(ρ,a) = 1. The above observation gives
us r(ρ,a) = 1 < r(mk,a), ∀mk ∈ M, violating the necessary
and sufficient condition (17). Hence, for this particular pair of
ρ and a, the worst-case impact of stealthy attacks Jρ(a,M)
is unbounded, contradicting the assumption.

Lemma 4 enables us to determine whether a subset of V is
a dominating set. On the other hand, Theorem 2 affords us to
restrict the admissible actions of the defender to dominating
sets of V . This step is beneficial to the defender in selecting
monitor vertices such that the defense cost (11) and the
expected worst-case impact of stealthy attacks (12) are always
bounded. More detail on how the defender and the malicious
adversary select their actions is given in the following section.

Remark 6: The condition (18) enables us to seek all the
dominating sets of a given network. Leveraging the structure
of (18), we sequentially multiply each row of (A + I) with∑

mk∈M emk
. Whenever the result is equal to zero, we stop

the examination and determine that the subset M is not a
dominating set. Otherwise, it is a dominating set. Moreover,
since the examination of each subset of the vertex set V is
independent, it can be executed by parallel computations with
the help of computer clusters. ◁

TABLE I: Components of the Stackelberg security game be-
tween a defender and a malicious adversary.

Component Description
Players Defender and Adversary
Model knowledge The vertex set V , the edge set E , the self-loop
of two players gains θi, the alarm threshold δi (∀i ∈ V)
Action Space Defender: D = {M | M ⊂ V, |M| ≤ ns, (18)}

Adversary: A = V
Game Payoff Defender minimizes R(a,M) defined in (11)
& Goal Adversary maximizes Q(a,M) defined in (12)
Information Defender takes action first
Structure Adversary responds to Defender’s action

V. STACKELBERG SECURITY GAME

In this section, to assist the defender and the malicious
adversary in selecting their best actions, we employ the Stack-
elberg game-theoretic framework where the defender acts as
the leader and the malicious adversary acts as the follower of
the game. Subsequently, we provide an algorithm to illustrate
the procedure of how the two agents seek their best actions.

A. Game setup
To investigate the best actions of the defender and the

adversary, we assume that they are two strategic players
in a game. The defender can select at most ns monitor
vertices on which to place one sensor at each selected vertex
with the purpose of monitoring malicious activities. Given
Assumption 3, let us denote the collection of dominating sets
as D, where each dominating set has at most ns elements,
i.e., D = {M | M ⊂ V, |M| ≤ ns, M satisfies (18)}. This
collection D is chosen as the action space of the defender.
Meanwhile, the malicious adversary is able to select any vertex
to conduct the stealthy data injection attack, i.e., the action
space of the malicious adversary is A = V .

Based on the catastrophic consequences caused by famous
malware such as Stuxnet and Industroyer [2], [3], the de-
fender should decide their defense strategy regardless of the
presence of malicious adversaries since the defender does not
know when adversaries attack the system. Consequently, it
is reasonable to let the defender select and announce their
action publicly before the presence of the adversary [14], [22],
[23]. The defender is called the leader while the malicious
adversary is called the follower. The purpose of the defender
is to minimize the defense cost R(a,M) in (11) with knowing
that the malicious adversary bases their action on the leader’s
decision. Thus, the leader considers the following problem.

Problem 1: Given that the malicious adversary maximizes
(12), the defender selects an optimal dominating set M⋆ ∈ D
that minimizes the cost (11). ◁

We cast the Problem 1 in the Stackelberg game-theoretic
framework with the defender as the leader, who selects and
announces their action first, and the malicious adversary as the
follower. The components of the Stackelberg game between
the defender and the malicious adversary are summarized in
Table I. This Stackelberg game always admits an optimal
action [21], which is defined below.

Definition 4 (Stackelberg optimal action [35]): If there ex-
ists a mapping T : D → A such that, for any fixed M ∈ D,
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one has Q(T M,M) ≥ Q(a,M) for all a ∈ A, and if there
exists M⋆ ∈ D such that R(T M⋆,M⋆) ≤ R(T M,M) for
all M ∈ D, then the pair (a⋆(M⋆),M⋆) ∈ A × D, where
a⋆(M⋆) = T M⋆, is called a Stackelberg optimal action with
the defender as the leader and the adversary as the follower
of the game. ◁

Based on Definition 4, we first analyze the Stackelberg
optimal action and then provide two solutions that find it in
the following subsection.

B. Stackelberg optimal action

Recall Problem 1 and Definition 4, the defender finds their
optimal action by solving the following optimization problem:

M⋆ = arg min
M∈D

R(a⋆(M),M), (19)

where

a⋆(M) = argmax
a∈A

Q(a,M). (20)

One can verify that the optimal solution (a⋆(M⋆),M⋆)
found through solving the optimization problems (19)-(20)
is equivalent to the one in Definition 4. To obtain the best
monitor set M⋆ by solving (19), we provide the following
proposition.

Proposition 1: Consider the networked control system (4)-
(6) associated with an undirected connected graph G. Denote
D as a non-empty collection of all the dominating sets Di

of the graph G with a cardinality of at most ns, i.e., D =
{D1,D2, . . . ,D|D|}. For each dominating set Di, let zi =∑

m∈Di
em be an N -dimensional binary vector, where j-th

entry of zi being equal to 1 indicates that vertex j belongs
to Di. Define v as a |D|-dimensional binary vector where i-th
entry of v being equal to 1 indicates that Di is chosen as a
monitor set. Then, the optimal monitor set is determined by v⋆,
which is the optimal solution to the following mixed-integer
semidefinite programming problem:

min
z̄(a,ρ) ∈RN , v ∈{0,1}|D|, P(a,ρ) ∈RN×N , β > 0

c(|M|) + β (21)

s.t. 1⊤|D|v = 1, P(a,ρ) = P⊤
(a,ρ) ≥ 0,∑

ρ∈V−a

πa(ρ) δ
⊤z̄(a,ρ) ≤ β,

0 ≤ z̄(a,ρ) ≤ M̃ [z1, z2, . . . , z|D|] v,[
−L̄P(a,ρ) − P(a,ρ)L̄ P(a,ρ)ea

e⊤a P(a,ρ) 0

]
+ diag

([
eρ
0

])
− diag

([
z̄(a,ρ)
0

])
≤ 0, ∀ (a , ρ) ∈ V × V−a,

where 1|D| stands for a |D|-dimensional all-one vector, δ =
[δ1, δ2, . . . , δN ]⊤ is the alarm threshold vector of all the
vertices, and M̃ is a large positive number, also called a “big
M” [17]. ◁

Proof: The proof is omitted due to limited space.
Successfully solving (21) gives us the best monitor set M⋆

represented by the optimal solution v⋆. However, dealing with
the large mixed-integer SDP (21), which contains N×(N−1)
attack scenarios for all possible pairs (a, ρ), poses efficiency

Algorithm 1 Stackelberg optimal action through parallel
computations

Input: The vertex set V , the edge set E , the self-
loop gains θi, the alarm thresholds δi, ∀i ∈ V , the
sensor budget ns, the cost of utilized sensors c(|M|), the
conditional belief πa(ρ), and nc computer cores where
j-th core is denoted as Uj , j ∈ {1, 2, . . . , nc}.
Output: The best monitor set M⋆ and the best attack
vertex a⋆(M⋆).
Initialize: D = {M|M ⊂ V, |M| ≤ ns, (18)}

1: Equally divide D into nc partitions {D1,D2, . . . ,Dnc
}

where partition Dj is assigned to computer core Uj .
2: for every computer core Uj do
3: for every dominating set M in Dj do
4: for every pair (a , ρ) ∈ V × V−a do
5: solve (10).
6: end for
7: Compute (11).
8: end for
9: end for

10: Solve (19) to obtain M⋆ and a⋆(M⋆).

challenges in very large networks. To deal with such an issue,
we leverage parallel computations mentioned in Remark 6 and
propose Algorithm 1. The following section discusses how the
proposed concept of dominating sets significantly alleviates
the computational complexity in large networks.

Remark 7: Let us discuss the solution to (19) in the absence
of Assumption 2. Given that the attack and the distant target
vertices are the same, the worst-case impact of stealthy attacks
(7) is bounded when the attack vertex belongs to the set
of monitor vertices according to Theorem 1. Therefore, to
guarantee the boundedness of (7) for an arbitrary attack vertex,
the defender has to trivially monitor all the vertices, i.e., (19)
only admits a single trivial solution M ≡ V . To have a richer
and more interesting allocation problem, we desire to use
Assumption 2.

VI. COMPUTATIONAL COMPLEXITY

In this section, we highlight the benefits of characterizing
admissible monitor sets as dominating sets to the computation,
especially in large-scale networked control systems.

Without the consideration of the collection D in Proposi-
tion 1, the security allocation problem requires the defender to
solve (21) with the collection of all the subsets of the vertex
set V , whose cardinality is denoted as S(N,ns) where N is
the number of vertices in the network and ns is the sensor
budget. This number S(N,ns) can be computed as follows:

S(N,ns) =

ns∑
k=1

(
N

k

)
. (22)

This number S(N,ns) grows dramatically when either the
number of vertices N or the sensor budget ns increases due
to S(N,ns) = O(Nns), where O stands for Big O notation.

An illustration of the dramatic increase of S(N,ns) with
respect to N (blue dashed-dotted line) can be found in Figure 2
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Fig. 2: Given ns = 3, the number of subsets of the vertex set
V with respect to the number of vertices has the same slope
as O(N3). The average number of dominating sets is given
through the Monte-Carlo simulation with 500 samples.

where it has the same slope as O(N3) (red dashed line). In
Figure 2, we also conduct Monte-Carlo simulations with 500
samples to count the number of dominating sets with respect to
the size of the graph N , which is denoted as the black dashed-
dotted line. In the Monte-Carlo simulations, we examine
Erdős–Rényi random undirected connected graphs G(N, q),
where N is the number of vertices and an edge is included
to connect two vertices with a probability q = 0.5 [36]. By
observing the results in Figure 2, the number of dominating
sets with a fixed sensor budget dramatically decreases when
the size of networks increases. Therefore, adopting the concept
of dominating sets in solving (21) enables us to significantly
reduce its computational complexity.

Regarding the parallel computation proposed in Algo-
rithm 1, the concept of dominating sets plays a crucial role
in practice. The number of possible actions computed by
(22) possibly requires the defender to employ a large number
of working hours of computer cores, which are limited in
practice. In fact, as the number of vertices increases, the
number of possible actions grows significantly (see Figure 2),
making the solution methodology impractical in dealing with
the security problem in very large networks. In contrast,
the number of dominating sets with a fixed sensor budget
typically decreases with respect to the size of random graphs
(as seen in the example in Figure 2), requiring greatly fewer
working hours of computer cores. As a result, the concept of
dominating sets enables us to practically handle the security
allocation problem in very large networks.

It is worth noting that the proposed method is carried
out in the design phase, which can be computed offline.
Moreover, the proposed method can be improved by utiliz-
ing parallel computation toolboxes and computer clusters as
discussed above (see Remark 6 and Algorithm 1). Thus, the
computational complexity does not significantly impact the
implementation of the proposed method (see more discussions

in [14, Sec. V]). In the next section, we are likely to show the
effectiveness of the proposed security allocation scheme with
the notion of dominating sets through a numerical example.

VII. NUMERICAL EXAMPLE

In the first part of this section, we validate the main
result of this paper presented in Theorem 2 and find the
Stackelberg optimal action for the defender and the malicious
adversary in a numerical example. In the remainder of this
section, the alleviation in the computational complexity will
be discussed. The simulation is performed using Matlab 2023b
with YALMIP 2021 [37] and MOSEK solver on a personal
computer with 2.9-GHz, 8-core Intel i7-10700 processor and
16 GB of RAM.

To demonstrate the obtained results, let us consider an
example of a 50-vertex networked control system depicted in
Figure 3. The 50-vertex graph is an Erdős–Rényi random undi-
rected connected graph where an edge is included to connect
two vertices with a probability of 0.5. Parameters of the system
are selected as follows: θi = 0.5, δi = 1, ∀i ∈ V; the cost
for the number of utilized sensors is set as c(|M|) = κ|M|
where κ = 5; the beliefs of the defender and the malicious
adversary in the location of the target vertex given an attack
vertex are assumed to be uniformly distributed; and the sensor
budget ns = 3. It is worth noting that the mixed-integer SDP
(21) considers all possible pairs of (a, ρ) ∈ V ×V−ρ, yielding
50× 49 = 2450 attack scenarios, which are considerable.

A. The Stackelberg optimal action
First, we begin with finding all the dominating sets of the

considered 50-vertex graph (see Figure 3). By investigating
all the subsets M ⊂ V where |M| ≤ ns, twenty subsets
satisfy the necessary and sufficient condition (18), which are
dominating sets. One of those dominating sets is illustrated in
Figure 3 where elements of the dominating set are coded blue.
The computational time for finding dominating sets with the
sensor budget ns = 3 is under one second.

Next, we validate the obtained result of Theorem 2. From
Figure 3, let us consider a system Σmk

≜ (−L̄, ea, e
⊤
mk

, 0)
where ea represents the input at any vertex and emk

represents
the monitor output at a blue vertex. We simply examine that
there exists at least one blue vertex such that the relative degree
of Σmk

is never greater than one. Thus, the cost for the de-
fender and the expected worst-case impact of stealthy attacks
are always bounded according to the result in Theorem 2. To
validate their boundedness, we compute the defense cost (11)
and the expected worst-case impact of stealthy attacks (12) for
an arbitrary pair of a vertex a ∈ V and a dominating set M.
Through the computation, the maximum cost for the defender
and the maximum expected worst-case impact of stealthy
attacks are obtained as follows: R(a,M) ≤ 50.2456 and
Q(a,M) ≤ 48.4235, which verifies the result in Theorem 2.

Finally, the best monitor set M⋆ is found by directly
solving (21). The optimal action M⋆ for the defender consists
of three blue vertices in Figure 3 that yields the minimum
cost of R(a⋆(M⋆),M⋆) = 49.7985. Given such an optimal
action M⋆, the corresponding attack vertex a⋆(M⋆) yields
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Fig. 3: 50-vertex graph where the optimal monitor vertices are
coded blue and the optimal attack vertex is coded red.

the maximum expected worst-case impact of stealthy attacks
Q(a⋆(M⋆),M⋆) = 47.9764.

B. Computational complexity

As discussed above, the 50-vertex networked control system
(see Figure 3) gives us twenty dominating sets where the
sensor budget is three (ns = 3). This number is extremely
smaller than the number of subsets of the vertex set which
has at most ns elements, i.e., S(50, 3) = 20875. Solving the
mixed-integer SDP (21) normally employs the branch-and-
bound algorithm. Adopting the concept of dominating sets
considers 20 branches instead of 20875 branches, significantly
saving computational resources. On the other hand, if we go
for the parallel computation suggested in Algorithm 1, we only
need to request 20 computer cores for those dominating sets,
which are suitable for many computer cluster platforms.

VIII. CONCLUSION

In this paper, we investigated the security allocation problem
in a networked control system faced with a stealthy data
injection attack. The uncertain target vertex allowed us to
formulate the objective functions of the defender and the
adversary by considering probabilistic locations of the mali-
cious target. We presented a necessary and sufficient condition
based on dominating sets under which the defender guarantees
the boundedness of their cost and the expected worst-case
impact of stealthy attacks. The security allocation problem
was cast in the Stackelberg game-theoretic framework where
the defender plays the leader and the malicious adversary
acts as the follower. Then, we provided an algorithm to
show the procedure of finding the Stackelberg optimal action.

The advantage of the proposed security allocation scheme
was highlighted in the context of large-scale networks via a
discussion on the computational burden and several numerical
simulations. In future work, we can empower the adversary by
allowing them to conduct attack signals on multiple vertices or
sophisticated attacks such as multiplicative false data injection
attacks and communication edge removal attacks. Further, we
plan to characterize the Stackelberg optimal action for the
defender and the adversary through graph properties such as
centrality measures.

APPENDIX I
PROOF OF LEMMA 1

Showing (13) is trivial when the monitor vertex set M has
only one vertex. We assume that M has more than one monitor
vertex. From the worst-case impact of stealthy attacks (7), let
us introduce the following optimization by removing |M|− 1
constraints except the constraint corresponding to a monitor
vertex mk ∈ M as follows:

Jρ(a,mk) = sup
x(0)=0, ζ∈L2e

∥yρ∥2L2
(23)

s.t. ∥ymk
∥2L2

≤ δmk
.

The design of the optimization problem (23) tells us that
its feasible set contains the feasible set of the optimization
problem (7). Further, the two optimization problems (7) and
(23) have the same objective function. This implies that
Jρ(a,M) ≤ Jρ(a,mk) for all mk ∈ M, directly resulting
in (13).

APPENDIX II
PROOF OF LEMMA 3

Let us denote a tuple (λ̄mk
, x̄mk

, ḡmk
) ∈ C × CN × C as

a zero dynamics of Σmk
, where a finite λ̄mk

is called a finite
invariant zero of Σmk

. From Definition 1, one has that the
tuple (λ̄mk

, x̄mk
, ḡmk

) satisfies[
λ̄mk

I + L̄ −ea
e⊤mk

0

] [
x̄mk

ḡmk

]
=

[
0
0

]
. (24)

The above equation is rewritten as[
(λ̄mk

− θ0)I + L̄+ θ0I −ea
e⊤mk

0

] [
x̄mk

ḡmk

]
=

[
0
0

]
,

(25)

where θ0 ∈ R+ is a uniform offset self-loop control gain. From
(25), the finite value (λ̄mk

− θ0) ∈ C is an invariant zero
of a new state-space model Σ̃mk

≜ (−L̄ − θ0I, ea, e
⊤
mk

, 0).
For all λ̄mk

∈ C satisfying (25), the control gain θ0 can
be adjusted such that θ0 > Re(λ̄mk

), resulting in that Σ̃mk

has no finite unstable zero. Then, the self-loop control gains
θi, i ∈ {1, 2, . . . , N}, in (2) are tuned with θ0 such that the
system Σmk

is identical with Σ̃mk
. By this tuning procedure,

the system Σmk
also has no finite unstable invariant zero.
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APPENDIX III
PROOF OF THEOREM 1

The result in Lemma 2 enables us to investigate invariant
zeros of the systems Σρ and Σmk

, ∀mk ∈ M. Based on
Lemma 3, Σmk

has no finite unstable invariant zero, which
leaves us to analyze infinite invariant zeros of those systems.
Recall the equivalence between the relative degree of an SISO
system and the degree of its infinite zero (see Remark 4),
a necessary condition to guarantee the boundedness of the
optimization problem (14) is that there exists at least one
system Σmk

(mk ∈ M) such that the number of its infinite
invariant zeros is not greater than that of the system Σρ. This
implies r(mk,a) ≤ r(ρ,a). For sufficiency, it remains to show
that if r(mk,a) ≤ r(ρ,a), all the infinite zeros of the system
Σmk

are also infinite zeros of the system Σρ. The following
proof is adapted from our previous results in [12, Th. 7]. In
the investigation, we make use of the definition of infinite
invariant zeros in [38, Def. 2.4]. We investigate infinite zeros
of Σmk

and Σρ by starting from their transfer functions with
zero initial states

G(ρ,a)(s) = e⊤ρ (sI + L̄)−1ea =
P(ρ,a)(s)

Q(s)
,

G(mk,a)(s) = e⊤mk
(sI + L̄)−1ea =

P(mk,a)(s)

Q(s)
, (26)

where s ∈ C is the Laplace complex variable. Based on
Remark 4, it gives that P(ρ,a)(s), P(mk,a)(s), and Q(s) are
the polynomials of degrees N − r(ρ,a), N − r(mk,a), and
N , respectively. Let us denote zτ = στ + jωτ ∈ C, τ ∈
{1, 2, . . . , r(mk,a)} with infinite module as infinite invariant
zeros of Σmk

. Indeed, the zero zτ (1 ≤ τ ≤ r(mk,a)) is an
infinite invariant zero of maximal degree r(mk,a) of the system
Σmk

[38, Def. 2.4] if it satisfies

lim
∥zτ∥→∞

zqτG(mk,a)(zτ ) = 0, (0 ≤ q ≤ r(mk,a) − 1),

lim
∥zτ∥→∞

z
r(mk,a)

τ G(mk,a)(zτ ) ̸= 0. (27)

Further, with 0 ≤ q ≤ r(mk,a) − 1, we also basically have

lim
∥zτ∥→∞

zqτG(ρ,a)(zτ ) = lim
∥zτ∥→∞

zqτP(ρ,a)(zτ )

Q(zτ )
= 0. (28)

The above limit (28) holds because the denominator
zqτP(ρ,a)(zτ ) is the polynomial of degree N − r(ρ,a) + q ≤
N − 1 < N , where N is the degree of the polynomial Q(zτ ).
This implies that any infinite zeros zτ of maximal degree
r(mk,a) of the system Σmk

are also infinite zeros of degree
r(mk,a) of the system Σρ.

APPENDIX IV
PROOF OF LEMMA 4

Let us decompose C(M) ≜ CA(M) + CI(M) where
CA(M) ≜

∑
mk∈M Aemk

and CI(M) ≜
∑

mk∈M emk
.

Entry i-th of CI(M) takes 0 if vertex i does not belong to M
and 1 if vertex i belongs to M. Entry i-th of CA(M) takes
0 if all the neighbors of vertex i do not belong to M and a
non-zero value if at least one neighbor of vertex i belongs to
M. Thus, entry i-th of C(M) takes 0 if vertex i and all of its

neighbors do not belong to M; takes a non-zero value if vertex
i or one of its neighbors belong to M. If the condition (18)
fulfills, the vector C(M) has no zero entry. This implies that
an arbitrary vertex in V is either a vertex of M or a neighbor
of a vertex of M, resulting in that M is a dominating set.
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