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a b s t r a c t

Discrete-time consensus plays a key role in multi-agent systems and distributed protocols. Unfor-
tunately, due to the self-loop dynamics of the agents (an agent’s current state depends only on its
own immediately previous state, i.e., one time-step in the past), they often lack privacy guarantees.
Therefore, in this paper, we propose a novel design that consists of a network augmentation, where
each agent uses the previous iteration values and the newly received ones to increase the privacy
guarantees. To formally evaluate the privacy of a network of agents, we define the concept of privacy
index, which intuitively measures the minimum number of agents that should work in coalition to
recover all the initial states. Moreover, we aim to explore if there is a trade-off between privacy
and accuracy (rate of convergence) or if we can increase both. We unveil that, with the proposed
method, we can design networks with higher privacy index and faster convergence rates. Remarkably,
we further ensure that the network always reaches consensus even when the original network does
not. Finally, we illustrate the proposed method with examples and present networks that lead to higher
privacy levels and, in the majority of the cases, to faster consensus rates.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The pervasiveness of interconnected devices having commu-
ication capabilities triggered a growing interest in distributed
ystems and distributed methods. These large-scale systems of
evices (or, generically speaking, agents) are usually spatial dis-
ributed. Hence, there is a frequent interest in jointly compute a
unction on data from all the agents in the system via vicinity
nteractions, i.e., where the agents transmit/receive data only
rom the neighbors [1–9].

It is of utmost importance to study and ensure beyond ac-
uracy properties in this type of distributed agents’ systems
uch as privacy [10–12]. The common approaches that aim to
tudy/achieve privacy in consensus methods may be categorized
n one of the following classes: homomorphic encryption-based
HE-based); differential privacy-based (DP-based); and observa-
bility-based (O-based).

Briefly, HE-based average consensus methods demand for
costly computations and communications, resulting in a poten-
tially prohibitory cost of use in applications with limited compu-
tation and communication power [13–20]. DP-based approaches
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try to gain privacy by introducing uncertainty through the addi-
tion of noise to shared information [21–29]. In this scenario, the
consensus obtained will be in the expected value which may have
uncertainty, it may not be suitable for proper decision making,
and its implementation and the finite time analysis becomes a
harder problem to study [30,31]. Also, noise generation is usually
achieved via a pseudo-random generation that depends on the
initial seed. Consequently, the privacy assurances depend on the
seed used (that should be secret) or the use of an expensive
random number generator device [32].

With a different approach to privacy, in [33], the authors in-
troduces a privacy-preserving finite transmission event-triggered
quantized average consensus algorithm for battery-powered or
energy-harvesting wireless networks. The algorithm ensures
efficient communication and transmission ceasing, thereby pre-
serving available energy. The study establishes topological condi-
tions for maintaining node privacy comparing the method with
existing algorithms.

In contrast, our work is aligned with the O-based approaches
that focus on curious agents that try to retrieve other agent’s
states by considering the dynamics evolution, and therefore, es-
timate the states that were deemed to be private. Therefore,
observability (in dynamical systems) yields necessary and suf-

ficient conditions to obtain an estimator capable of retrieving
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gents’ initial states that agents wanted to be unknown to the
emaining parties [11,34].

In [35], the authors propose a distributed average information
onsensus algorithm that ensures confidentiality of each agent’s
nitial state without introducing noise to the state values. They
chieve privacy using concealing factors assigned to agents by a
entral authority before initiating the consensus algorithm. The
ethod also requires a balancing constraint on the edge weights.

n contrast, our approach does not rely on a central authority and
liminates the need for a balancing constraint.
The work in [29] derives closed-form expressions for both

he optimal distributed estimation and privacy parameters. More-
ver, in [31], the authors propose a privacy-preserving approach
ased on state decomposition for the network average consensus
roblem, where each node decomposes its state into sub-states
ith random initial values. Our method differs by not requiring
losed-form expressions and state decomposition.
In [36], it is proposed a dynamic average consensus algorithm,

hich ensures accuracy and privacy of initial values under topo-
ogical restrictions. However, their algorithm creates a virtual
etwork with a complexity of O(n2) nodes, whereas our methods
equire only O(n) nodes. The work in [11] analyzes the interplay
etween network topologies and observability subspace.
Finally, in [37], the authors use observability and optimiza-

ion techniques to present an algorithm for network synthesis
ith privacy guarantees. Their method optimizes communication
raph weights to maximize node privacy. However, the design
omplexity and privacy guarantee for all agents are challenging
o achieve, which distinguishes our method.

ain contributions. We propose a novel design that consists of
network augmentation, where each agent uses the previous

teration values and the newly received ones to increase the
rivacy guarantees. We define the concept of privacy index, to
ormally assess the privacy of a network of agents, which in-
uitively measures the minimum number of agents that should
ork in coalition to recover all the initial states. Furthermore,
e aim to explore if there exists a trade-off between privacy
nd accuracy (rate of convergence) or if we can improve both.
e unveil that, with the proposed method, we can design net-
orks with a higher privacy index and attain higher convergence
ates. Furthermore, we ensure that the network always reaches
onsensus even when the original network does not.

aper structure. In Section 1.1, we summarize the concepts and
otation used in this paper. In Section 2, we formally state the
roblem we aim to address. In Section 3, we present a discrete-
ime consensus method that allows to augment the privacy-
evel of consensus networks. We show illustrative examples in
ection 4, and Section 5 closes the paper with future research
irections.

.1. Preliminaries & terminology

We denote vectors with lower-case letter (e.g., x) and matrices
ith upper-case letters (e.g., A). We denote the set of integers

rom 1 to n by [n] = {i ∈ Z : 1 ≤ i ≤ n}. We denote the ith
ntry of vector x ∈ Rn by xi, with i ∈ [n], the ith row of matrix
∈ Rn×m by Ai, and we use Aij to denote the jth entry of the ith

ow of A, where i ∈ [n] and j ∈ [m]. Moreover, we denote by eni
the ith canonical n-dimensional column vector, a vector of size n
with all entries equal to zero, except the ith entry that is one. We
denote by In the n×n identity matrix. Analogously, we denote by
1n×m an n×m matrix with all entries equal to 1, by 0n×m an n×m
matrix with all entries equal to 0, and when m = 1 we simply
drop the m to denote a vector of size n (e.g., 1n). Moreover, we
denote the transpose of a square-matrix A by A⊺. If A ∈ Rn×m and
2

I ⊂ [m], we denote by A(I) the matrix composed by the columns
of A with indices in I.

Additionally, we denote by span(A) the linear span of A ∈ Rn×n

and its spectrum (set of eigenvalues) by σ (A). A matrix A ∈ Rn×n

is row-stochastic if the following hold: (a) Aij ≥ 0, for all i, j =

1, . . . , n, and (b)
∑n

j=1 Aij = 1, for all i = 1, . . . , n. Similarly, a
matrix A ∈ Rn×n is column-stochastic if A⊺ is row-stochastic. If A
is both row- and column-stochastic then we say that A is doubly-
stochastic. We denote the structure of a matrix A ∈ Rn×m by Ā,
where Ā ∈ {0, ⋆}n×m, with Āij = ⋆ whenever Aij ̸= 0 and Āij = 0,
otherwise.

A (directed) network of agents is a graph G = ⟨X , EX ,X ⟩, where
X = [n] are the nodes that denote the set of n agents, and
EX ,X ⊂ X ×X are the (directed) edges that correspond to pairs of
agents (nodes). If (i, j) ∈ EX ,X then the agenti transmits to agent
j. Given a matrix A ∈ Rn×n, we associate to it a directed network
of agents via a digraph representation G(A) = ⟨X , EX ,X ⟩, where
X = [n] and (i, j) ∈ EX ,X if and only if Aji ̸= 0.

For a network of agents (communication graph) G=⟨X , EX ,X ⟩

and an agent i ∈ X in the network of agents G, we denote the in-
neighborhood of agent i by N in

i , where N in
i = {j : (j, i) ∈ EX ,X }.

Similarly, we denote the out-neighborhood of agent i by N out
i ,

where N out
i = {j : (i, j) ∈ EX ,X }. A network is strongly connected

if there is a path between each pair of nodes (i.e., if for each x ∈ X
there is a sequence of nodes x, x1, . . . , xk, y for all y ∈ X such that
(x, x1), (xk, y), (xi, xi+1) ∈ EX ,X for all i = 1, . . . , k − 1).

2. Problem statement

Consider a discrete-time consensus method modeled as a lin-
ear time-invariant system (LTI)

x(k + 1) = Ax(k) such that lim
k→∞

x(k) = x∞1n, (1)

where k ∈ N, x(k) is a vector collecting the states of all the agents,
x(k) ∈ Rn, with xi(k) denoting the state of agent i at time k, A is a
row-stochastic matrix, and x(0) = x0 is the initial state.

Furthermore, we will work under the following commonly
adopted assumption in the context of consensus.

A1 The network of agents described by G(A) is strongly con-
nected.

Now, suppose that a set of one or more agents, in coalition,
seeks to determine the initial states of all the other agents,
i.e., observe the system’s states in (1) according to

y(k) = Cx(k), (2)

where C ∈ Rm×n is the output matrix. Under this setup, we say
that the system in (1) is observable if and only if given the values
of y(k) for k = 0, . . . , n−1, we can uniquely determine x0, under
the additional assumption that system (1)–(2) described by the
pair (A, C) is known.

Remark 1. We can study observability in a generic sense, struc-
tural observability [38], by looking at Ā which simply represents
which entries of A are fixed zero or not. A pair (Ā, C̄) is structurally
observable if there is a pair (A, C) respecting the sparsity pattern
in (Ā, C̄) that is observable [38]. Moreover, if a pair (Ā, C̄) is
structurally observable, then almost all pairs (A, C) that respect
the sparsity pattern are observable. Finally, if the pair (A, C) is
observable then the pair (Ā, C̄) is structurally observable.◦

In other words, Remark 1 states that structural observability
is a necessary condition for observability. Subsequently, given
a dynamics matrix A, with G ≡ G(A), we denote by |G|O the
minimum number of state variables that we need to measure
such that the system is structurally observable. This, allow us to
introduce the notion of privacy index as follows.
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efinition 1. Given a system modeled as in (1) with network
f agents G(A), we define the privacy index |G(A)|O as |G(A)|O =

rgminI⊂[n] |I| such that the pair (A, C ≡ In(I)) is structurally
bservable. In other words, the number of agents’ states (which
an be one or more state variables) uniquely measured by a
ensor required so that the network is structural observable.

In a broadcast scenario, each agent sends its state multiplied
y the corresponding dynamics matrix weight. Hence, an agent
rying to recover other agents initial states corresponds to placing
n output in that agent. In this setup, the privacy index counts
he minimum number of agents that should collude to recover
ll the agents’ initial state. Note that, if we need to observe |GO|

gents’ states to ensure structural observability, then with |GO|−1
he system is not structurally observable and not observable, by
emark 1.
Another important property of a consensus method is how

ast it converges. Given the dynamics matrix A, the rate of con-
ergence [39] is computed using the spectral gap of A as:

A = 1 − ρ(A), (3)

here ρ(A) = max {|λ| : λ ∈ σ (A) \ {1}}. In particular, the higher
he spectral gap RA the fastest is the convergence of the consensus
rotocol.
It is a common belief that there exists a trade-off between

rivacy and accuracy, which we measure here as the rate of
onvergence. Therefore, we aim to explore if such trade-offs
xists or if we can increase privacy and still increase the rate of
onvergence. Hereafter, we will see that there are several cases
ere we do not need to compromise accuracy to increase the
rivacy level.
Subsequently, we devote the remainder of this work to an-

wering the following problem.

1 Given N agents with a communication digraph G = (X , EX ,X ),
f there exists a minimum size augmented dynamics augment the
ynamics such that (i) the state is x̃i(k+1) = [xi(k+1) x̂i(k)], with

ˆi(k) ∈ R, and (ii) initial condition x̃i(0) ∈ R2

Augmented Dynamics –

• x̃(k + 1) = Ãx̃(k), with x̃(k) = [ x̃1(k) ... x̃N (k) ] (4a)

uch that the following properties hold:

Specifications –

onsensus

• lim
k→∞

x̃i(k) = p⊺
∞
x0 [ 1 1 ] , (4b)

here p∞ is the limit distribution of A (the left-eigenvector of A
associated with the eigenvalue 1, normalized to sum 1). More-
over, we want to ensure this even when A has more than one
igenvalues with absolute value 1 (and cannot reach consensus);

rivacy

• the privacy index improves, |G(Ã)|O > |G(A)|O, (4c)

where |G(Ã)|O = argminI⊂[N] |I| such that the pair (A, C(I))
is structurally observable, and C =

[ ∑2
j=1 e2Nj ...

∑2
j=1 e2N2(N−1)+j

]
(i.e., each output measures the augmented states);

Rate of convergence

• the rate of convergence improves, RÃ > RA. (4d)

Notice that this is an idyllic problem that we aim to address.
nfortunately, as we will see, the proposed solution has some
ases where all the conditions in P1 cannot be achieved. Nonethe-
ess, we identify several cases where the proposed solution is able
o ensure all the conditions of P .
1 n

3

If we consider a simple averaging scheme modeled by a row-
stochastic dynamics matrix with zero diagonal entries, then we
end up with a plethora of networks which do not reach consen-
sus. Such approach would increase the privacy index but would
fail, in several cases, to reach consensus. Hence, we propose a new
scheme to overcome this limitation.

3. Designing communication networks for discrete-time con-
sensus with privacy guarantees: can the past help?

In this section, we address problem P1. We propose an aug-
mentation of the system that encodes the idea of each agent
using the its previous state together with the received neighbors’
states to the state update phase. We show that the proposed
extended system reaches consensus in Theorem 1, and show that
the final consensus is the same as the one of the original dynamics
in Theorem 2. In Corollary 1 and Remark 4, we show how the
proposed method can be used to reach average consensus. Finally,
we present a lower bound for the converge rate of the augmented
system in Theorem 3.

The following observation will be important to tackle the
problem that we identify in this work.

Remark 2. If the original row stochastic dynamics matrix A ∈

RN×N has eigenvalues with magnitude 1 besides the eigenvalue
1, i.e., σ (A)\{1} = {λ1, . . . , λN−1} and |λi| = 1 for some i ∈ [N−1],
hen the system in (1) does not reach consensus, and it reaches
periodic behavior (Perron–Frobenius Theorem [40]). ◦

First, we propose to do an augmentation network design,
iming to improve the overall network of agents’ privacy. To this
nd, we propose that an agent share with the neighbors not only
ts current state but also its previous state as captured in the
ollowing update rule: let x(0) = 0, x(1) =

3
2x0, and

xi(k + 2) =

⎛⎜⎝ ∑
j∈N in

i

xj(k + 1) +

∑
j∈N in

i

xj(k)

⎞⎟⎠/
2|N in

i |. (5)

Notice that (5) can be written as in (1), where A is the result
of normalizing the rows of the agents’ network adjacency matrix.
Notwithstanding, we may start from any A that is row stochastic
and generalize (5) as the following discrete LTI:

x̃(k + 1) = Ãx̃(k), (6)

where

Ã =

[0N×N IN
A
2

A
2

]
and x̃0 =

[
0

3
2x0

]
. (7)

We would like to notice that, from the representation point
of view, in both the case of self-loops and the augmented net-
work scheme proposed above the states are locally available
to an agent. However, the dynamics generated by integrating
these augmented states does not lead to the existence of self-
loops. Hence, the overall dynamics matrix does not have non-zero
elements in its diagonal (i.e., no self-loops).

To illustrate how this augmentation changes the network of
agents, consider the network represented by black nodes and

edges in Fig. 1, the digraph representation of A =

⎡⎣ 0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

⎤⎦ . After

he augmentation in (6), the network gains the additional red
odes (the augmented states) and red edges, depicted in Fig. 1,
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Fig. 1. Virtual network of agents representing the dynamics of (6) for the
riginal network of agents depicted by the black nodes and edges (i.e., G(Ã),
ith Ã given as in (6)). (For interpretation of the references to color in this

igure legend, the reader is referred to the web version of this article.)

he digraph representation of

˜ =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 1
4

1
4 0 1

4
1
4

1
4 0 1

4
1
4 0 1

4
1
4

1
4 0 1

4
1
4 0

⎤⎥⎥⎥⎥⎥⎦ .

Subsequently, we show that this augmented dynamics
chieves consensus, i.e., the second part of P1 (4b).

heorem 1. The extended system in (6)–(7) reaches consensus.◦

Proof. We start by verifying that 1 is an eigenvalue of Ã associ-
ated with the eigenvector 12n and the remaining eigenvalues have
all magnitude strictly smaller than 1. Let λ be an eigenvalue of A
associated with the eigenvector v. Then, it readily follows that

ṽ1 =

[
v

α1v

]
and ṽ2 =

[
v

α2v

]
re eigenvectors of Ã associated with the eigenvalues α1 and α2.
pecifically,

0n×n In
A
2

A
2

][
v

βv

]
= γ

[
v

βv

]
,

which is equivalent to[
βv

A
2v + β A

2v

]
= γ

[
v

βv

]
,

nd, because Av = λv, it follows that

βv

λ
2v +

βλ

2 v

]
= γ

[
v

βv

]
if and only if{

γ = β

λ
2v +

βλ

2 = γ β
⇔

{
γ = β

λ
2v +

βλ

2 = β2

rom which we conclude that

γ = β

β =
1
4

(
λ ±

√
λ(8 + λ)

)
.

herefore, we just need to set α1 =
1
4

(
λ +

√
λ(8 + λ)

)
and α2 =

1
4

(
λ −

√
λ(8 + λ)

)
.

Finally, we need to ensure that there is only one eigenvalue of
˜ equal to 1 and that the remaining ones have strictly smaller
agnitude. Let λ = 1 be the eigenvalue of A associated with

the eigenvector 1n. We have that α1 = 1 is an eigenvalue of
Ã associated with the eigenvector [1 1 ]

⊺
= 1 . Moreover, for
n n 2n b

4

Fig. 2. Plot views of the complex function
⏐⏐ 1
4

(
λ ±

√
λ(8 + λ)

)⏐⏐ for λ ∈ C and
|λ| ≤ 1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

λ = 1 we have that α2 = −
1
2 . Additionally, we have that for

|λ| ≤ 1 since

1
4

(
λ ±

√
λ(8 + λ)

)⏐⏐⏐⏐ ≤
1
4

(
|λ| +

⏐⏐⏐√λ(8 + λ)
⏐⏐⏐)

≤
1
4

(
1 +

⏐⏐⏐√λ(8 + λ)
⏐⏐⏐) .

Next, since argmaxλ∈C,|λ|≤1

⏐⏐√λ(8 + λ)
⏐⏐ = 3, we have that

1
4

(
1 +

⏐⏐⏐√λ(8 + λ)
⏐⏐⏐) ≤

1
4

(
1 +

√
8 + 1

)
= 1.

In fact,
⏐⏐ 1
4

(
λ ±

√
λ(8 + λ)

)⏐⏐ = 1 only for λ = 1 – see illustration
n Fig. 2. □

emark 3. Even if the original dynamics matrix A has eigenvalues
ith magnitude 1 besides the eigenvalue 1 then the system

n (6)–(7) reaches consensus, as asserted by Theorem 1, with
∞ = p⊺

∞
x0, where p∞ is the left-eigenvector of A associated with

the eigenvalue 1, by Theorem 2. ◦

Notice that Remark 3 states that we no longer need to carefully
select the network of agents to avoid networks that do not reach
consensus, see examples in Table 1. In other words, we have
a more flexible choice concerning the consensus network, and
P1 (4b) holds.

The next result states that if the agents in the original discrete
LTI system (1) reach the consensus value x∞ then the agents
using (6)–(7) not only reach consensus but also converge to x∞.

heorem 2. Consider the discrete LTI system in (1), with A a row-
tochastic matrix. If the state of (1) is such that limk→∞ x(k) =

∞1n, then the state of (6)–(7) is such that limk→∞ x(k) = x∞12n.◦

roof. If A is a row-stochastic matrix then it corresponds to a
arkov-chain. Moreover, the limit distribution is given by the
ormalized (to sum up to 1) left-eigenvector associated with the
igenvalue 1. The existence of this limit distribution is guaranteed

y the result in Theorem 1. We denote this limit distribution by
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Table 1
Examples of networks and respective privacy index according to the consensus protocol, the symbol ‘‘–’’ means that, in that case,
the network cannot reach consensus.
Network Privacy index

Metropolis RowStochastic PastConsensus

1
(RA = 0.25)

– 2
(RA ≈ 0.293)

1
(RA ≈ 0.333)

1
(RA ≈ 0.293)

1
(RA ≈ 0.331)

1
(RA = 0.2)

– 3
(RA ≈ 0.293)

1
(RA = 0.25)

2
(RA ≈ 0.423)

2
(RA ≈ 0.423)

1
(RA = 0.25)

2
(RA ≈ 0.293)

2
(RA ≈ 0.331)

1
(RA ≈ 0.167)

– 4
(RA ≈ 0.293)

1
(RA ≈ 0.167)

2
(RA ≈ 0.062)

2
(RA ≈ 0.315)
p∞. The left-eigenvalue of Ã associated with the eigenvalue 1 can
be computed by solving the following:[
v
⊺
1 v

⊺
2

]
Ã =

[
v
⊺
1 v

⊺
2

]
,

which is the same as[
v
⊺
1 v

⊺
2

] [0n×n In
A
2

A
2

]
=

[
v
⊺
1 v

⊺
2

]
.

herefore,

v
⊺
2
A
2 = v

⊺
1

v
⊺
1 + v

⊺
2
A
2 = v

⊺
2

⇔

{
v
⊺
2
A
2 = v

⊺
1

2v⊺
1 = v

⊺
2

and{
v
⊺
2
A
2 = v

⊺
1

2v⊺
1 = v

⊺
2

⇔

{
v
⊺
2A = 2v⊺

1

2v⊺
1 = v

⊺
2

⇔

{
v
⊺
2A = v

⊺
2

2v⊺
1 = v

⊺
2.

n fact, v2 = p∞ because it is the left-eigenvector of A associated
ith the eigenvalue 1. Hence, the left-eigenvector of Ã is u⊺

=
1
2p

⊺
∞

p⊺
∞

]
, and, when normalized to sum up to 1, is u′⊺

=
u

∥u∥1
.

Notice that, since ∥p⊺
∞

∥1 = 1, we have that ∥u∥1 =
1
2 + 1 =

3
2 .

hus, u′⊺
=

[ 1 ⊺ 2 ⊺
]
. Finally, we have that x = p⊺ x , and,
3p∞ 3p∞ ∞ ∞ 0

5

consequently,

u′⊺

[
0

3
2x0

]
=

1
3
p⊺

∞
0 +

2
3
p⊺

∞

3
2
x0 = x∞.

Hence, the consensus value is as desired. □

It immediately follows from Theorem 2 that average consen-
sus can be attained under the following setting.

Corollary 1. If the original dynamics matrix A in (1) is doubly-
stochastic then the system in (6) reaches average consensus. ◦

Nonetheless, when the objective is to do the design to reach
average consensus and the conditions of Corollary 1 do not hold,
we can do it considering the following observation.

Remark 4. If we aim to achieve average consensus, then we
just need to re-weight the initial agents state according to the
limit distribution p∞, setting the new initial state of agent i as
x̂i(0) =

xi(0)
(p∞)i

. ◦

Lastly, we would like to see how the convergence rate of the
original dynamics matrix and the augmented version relate.

Theorem 3. Let A be the dynamics matrix of (1) and Ã the dynamics
augmented matrix of (6)–(7). Let σ (A) = {λ , . . . , λ , 1} and
1 n−1
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R
h

i

a

g

g
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I

g

A = 1 − |λ|, where λ = argmaxλ′∈σ (A)\{1} |λ′
|. Then, the following

old:

(i) σ (Ã) =
{
α1
1, α

1
2, . . . , α

n−1
1 , αn−1

2 , − 1
2 , 1

}
, where ai1, a

i
2 are

the eigenvalues associated with λi, computed in the proof of
Theorem 1;

(ii) RÃ = 1 − |α|, where α = argmaxα′∈σ (Ã)\{1} |α′
|;

(iii) RÃ ≤ min{1−|α1|, 1−|α2|}, where a1, a2 are the eigenvalues
associated with λ. ◦

Proof. We have that (i) follows directly from the proof of Theo-
rem 1, and (ii) follows from the definition of rate of convergence
in (3). Concerning (iii) the proof follows from noticing that λ
is the second eigenvalue of A with higher absolute value that
is transformed into α1 and α2, two eigenvalues of Ã. Therefore
RÃ ≤ min{1 − |α1|, 1 − |α2|}, where α1, α2 are the eigenvalues
obtained in the proof of Theorem 1. □

It is worth noticing that we could use the proposed aug-
mentation with two additional nodes or even more. However,
the structure of the respective augmented matrix would have
repeated blocks. Therefore, such a strategy may be adopted and
explored but it will not lead to a better privacy index.

3.1. Theoretical guarantees

Given the dynamics matrix A ∈ RN×N , consider its structure
Ā ∈ {0, ⋆}N×N , where Āij = 0 if and only if Aij = 0 and Āij = ⋆,
otherwise. Let I ⊂ [N] denote the agents that are measured.
This corresponds to have an output matrix structure C̄ = [ĪN (I)],
.e., C̄ ∈ {0, ⋆}|I|×N that is the structural matrix composed by the
subset of rows of ĪN indexed by I.

The system with dynamics matrix Ā and observed state vari-
bles indexed by I is structurally observable if and only if

rank
([

Ā
C̄

])
= N,

where the grank (generic rank) of a structural matrix M̄ ∈

{0, ⋆}N1×N2 is the maximum rank achievable with a matrix M ′
∈

RN1×N2 such that M̄ ′ = M̄ [38]. In other words, the structural
output matrix C̄ compensates the grank deficiency of Ā.

Subsequently, the following result relates the privacy index of
a network without self-loops with its augmentation.

Theorem 4. Consider a connected network of agents with adjacency
matrix A ∈ RN×N without self-loops. If A has privacy index k then Ã,
as described in (7), also has privacy index k. ◦

Proof. Suppose that A ∈ RN×N has privacy index k. It follows that
rank(Ā) = N −k, where Ā ∈ {0, ⋆}N×N is the structural matrix. In
ther words, there is a generic rank deficiency of k in Ā to achieve

a generic full rank (i.e., N) [38]. Moreover, the value k yields the
number of agents that should be measured to attain structural
observability. Now, consider the augmented matrix

Ã =

[0N×N IN
A
2

A
2

]
.

The structural pattern is

¯̃A =

[
0̄N×N ĪN
Ā Ā

]
.

n this case, it is easy to see that

rank
(
¯̃A
)

= grank
([

0̄N×N ĪN
Ā 0̄N×N

])

= N + (N − k) = 2N − k.

6

Fig. 3. Star networks with 4, 5 and 6 agents in (a), (b) and c , respectively.

Hence, there is the same rank deficiency, and the privacy index
of Ã is also k. □

Next, we identify a class of networks, referred to as star-
networks (see Fig. 3 depicting a star network for N = 4, 5, 6),
where the proposed approach always yield a higher privacy in-
dex.

Corollary 2. Consider a star network with N ≥ 4 agents. Up to a
label permutation of the agents’ numbering, the structural pattern
Ā ∈ {0, ⋆}N×N of the adjacency matrix of a star network with
N agents, and the respective structural consensus matrix for this
network W̄ ∈ {0, ⋆}N×N are as follows:

Ā =

⎡⎢⎢⎣
0 ⋆ · · · ⋆

⋆ 0 · · · 0
...

...
. . .

...

⋆ 0 · · · 0

⎤⎥⎥⎦ , and W̄ =

⎡⎢⎢⎣
⋆ ⋆ · · · ⋆

⋆ ⋆ · · · 0
...

...
. . .

...

⋆ 0 · · · ⋆

⎤⎥⎥⎦ .

Then the privacy index of the network without self-loops (Ā) is N−2
and the privacy index of the network with self-loops (W̄ ) is 1. ◦

Proof. We can easily see that grank(W̄ ) = N , by considering
the diagonal parameters to be different from zero and setting the
off-diagonal ones to zero. Therefore, with an output in any of the
agents (i.e., setting C̄ = ēi, where ei is the ith canonical row vector
in RN corresponding to measure the state of agent i), we obtain
a structurally observable system since

grank
([

Ā
C̄

])
= N.

That is, by observing a single agent the system is structurally
observable.

On the other hand, we have that grank(Ā) = 2, meaning
we need to observe N − 2 agents to ensure that the system is
structurally observable, i.e., it follows by definition that privacy
index equals N − 2. By Theorem 4, it readily follows that the
privacy index of Ã is also N − 2. □

4. Illustrative examples

It is common that the agents update their states using infor-
mation received by neighbors together with their current state,
which corresponds to have non-zero diagonal elements in the
dynamics matrix A. A well-known way of selecting the dynamics
matrix entries (making use of non-zero diagonal entries) is by
using the so-called Metropolis weights [41], which are given as
follows:

Aij =

⎧⎪⎨⎪⎩
1

1+max{|N in
i |,|N in

j |}
if j ∈ N in

i and i ̸= j,

0 if j /∈ N in
i and i ̸= j,

1 −
∑

k∈N in
i
Aik if i = j.

(8)

This self-loop dynamics makes possible that an external entity, by
observing any agent’s state evolution, is able to observe the entire
system, leading to low privacy guarantees. In fact, under this
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Fig. 4. Star network of 4 agents.

dynamics, the privacy index is always 1. We use the Metropolis
weights to compare with the proposed approach.

In the examples that follow, in addition to the rate of con-
vergence, we mark in the consensus evolution plots the point
where the maximum absolute difference between the agents
states (error) starts to be less than a specific value. This property
further illustrates how fast the methods are converging.

Consider the network of agents G depicted by the black nodes
nd edges in Fig. 4. If we use, for instance, the Metropolis weights
o design the dynamics matrix utilized to do consensus, then the
etwork of agents becomes the one depicted by black nodes and
dges and red edges in Fig. 4. In Fig. 5(a), we depict the agents’
tates evolution from the initial state x0 = [ 0.1 0.3 0.6 1 ]⊺ when
sing the dynamics of (1) and A is defined with the Metropolis
eights. In this case, we have a privacy index of 1. In the case
here we do not consider self-loop dynamics and we use a row-
tochastic matrix A in the dynamics of (1), we actually cannot
each consensus, as noticed in Remark 3, see Fig. 5(b).

Notwithstanding, when we use the proposed augmented con-
ensus (6)–(7), we increase the privacy index to 2, and we can
each consensus. In Fig. 5(c), we portray this scenario, but we only
how the second half of agents’ states evolution, i.e., we omit the
irst half that corresponds to the past and is equal if we start all
he states with 0 and shift the presented ones a time unit ahead.

To further illustrate the proposed consensus method and con-
ept of privacy index, consider the network of agents G1, depicted
n Fig. 6.

In Fig. 7, we show the agents’ states evolution for the initial
tate x0 = [ 0 1.5 −0.8 2.4 −1.7 3.9 0.6 4.7 −3.1 5.5 −4.3 6 ]⊺. Again, notice
hat when using the Metropolis weights, we achieve a privacy
ndex of 1, and with the proposed consensus method we get a
rivacy index of 3.
Finally, in Table 1, we present some networks of agents and

valuate their privacy index depending on the used consensus
rotocol. Notice that in the majority of the reported cases, be-
ides ensuring consensus, the proposed method reaches a higher
rivacy level and a higher rate of convergence.
It is worth noticing that star-like networks do not allow to

each consensus when we do not consider self-loop dynamics.
otwithstanding, with the proposed augmentation we not only
chieve consensus but also increase both the privacy index and
he rate of convergence, as we may see in the first, third and
enultimate networks of Table 1.

. Conclusions

In this paper, we developed a discrete-time consensus method
here each agent uses the previous iteration values together
ith the recently received ones. The proposed method consists
f, at each time step, the agents computing the average of the
eighbors’ received states from the current and previous itera-
ions. Furthermore, we do not consider the agent to have self-loop
ynamics, i.e., they do not use their own states in the state update
hase, as this would prevent the network from reaching some
rivacy level. In other words, an external entity can recover all the
gents’ states by observing merely one agent. Notwithstanding, it
 w

7

Fig. 5. Consensus evolution for the network of agents depicted by the black
nodes and edges Fig. 4 (black nodes and edges and red edges for the Metropolis
weights). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 6. Network of agents G1 .

s known that if an agent averages the neighbors’ states (without
onsidering its own state), then it may reach a periodic behavior
instead of conducting consensus).

We unveil that, with the proposed method, we can not only
esign networks with higher privacy levels but also ensure that
he network always reaches consensus. Moreover, we unveil that
e may do so without compromising (most of the times) the
ate of convergence and further (most of the times) we actually
ncrease the rate of convergence.

Additionally, if the initial dynamics matrix is doubly-
tochastic, the proposed method reaches average consensus. We
llustrate the proposed method with examples and present net-
orks that lead to higher privacy levels and, in the majority of
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Fig. 7. Consensus evolution for the network of agents G1 depicted if Fig. 6.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

he cases, to a faster consensus (higher rate of convergence).
uture work includes building upon this approach to assess the
esign problem of given a set of states that are required to be
rivate, what should be the network topology that guarantees
uch requirement.
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