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Abstract— The artificial pancreas is an emerging concept of
closed-loop insulin delivery that aims to tightly regulate the
blood glucose levels in patients with type 1 diabetes. This
paper considers bias injection attacks on the glucose sensor
deployed in an artificial pancreas. Modern glucose sensors
transmit measurements through wireless communication that
are vulnerable to cyber-attacks, which must be timely detected
and mitigated. To this end, we propose a model-based anomaly
detection scheme using a Kalman filter and a χ2 test. One key
challenge is to distinguish cyber-attacks from large unknown
disturbances arising from meal intake. This challenge is ad-
dressed by an online meal estimator, and a novel time-varying
detection threshold. More precisely, we show that the ordinary
least squares is the optimal unbiased estimator of the meal
size under certain modelling assumptions. Moreover, we derive
a novel time-varying threshold for the χ2 detector to avoid
false alarms during meal ingestion. The results are validated
by means of numerical simulations.

I. INTRODUCTION
Type 1 diabetes (T1D) is an autoimmune disease which

causes elevated blood glucose (BG) levels due to the lack of
insulin secretion by the pancreas. The artificial pancreas (AP)
is an automated insulin delivery system designed to allevi-
ate the daily burden of self-managing T1D while ensuring
tight control of BG levels. An AP consists of three main
components: an insulin pump, a continuous glucose monitor
(CGM), and a controller. In particular, the pump continuously
injects a rapid-acting insulin analog (e.g., lispro) at a rate dic-
tated by the controller. A CGM is a glucose sensor deployed
in an AP which provides real-time BG measurements. The
main control objective of an AP is to ensure the BG levels
remain in a certain glycemic target range, typically 70-180
mg/dL. For minimal invasion, the pump and the CGM are
inserted in the subcutaneous (SC) tissue (i.e., under the skin)
which introduces input and sensing delays. These lags render
the BG control problem even more complicated in the face
of unknown disturbances such as meals or exercise.

To date, a plethora of closed-loop control strategies includ-
ing PID, model predictive, and a fuzzy logic controller has
been proposed to tackle the relevant challenges [1]. Most
of these controllers assume normal operating conditions.
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However, anomalies such as erroneous CGM readings result
in an incorrect insulin administration as the closed-loop
controller employed in the AP relies on accurate sensor
data. Inadequate insulin delivery may lead to hyperglycemia
(i.e., high blood sugar) which has long-term health impli-
cations. In contrast, excessive insulin may cause a lethal
hypoglycemic coma. This non-negligible problem has been
addressed in various notable works within a fault detection
framework [2]. Fault detection algorithms in the AP can be
broadly divided into two categories: model-based and data-
driven methods. In particular, data-driven methods requires a
large set of offline CGM measurements to extract statistical
features for decision-making (e.g., [3]). On the other hand,
model-based methods rely on a process model representing
the glucoregulatory dynamics to detect the anomalies in the
input-output behavior. In early work [4], an online fault
detection method which employs a state-space model in
the innovation form and a Kalman filter, was proposed
to improve the safety of the patients at sleep. In a more
recent work [5], a hybrid fault detector has been proposed
which employs an unscented Kalman filter for model-based
detection, and applies principal component analysis for the
data-driven part of the algorithm.

It is important to note that the traditional fault detectors are
designed against the natural malfunctioning of system com-
ponents, which are random, and not necessarily malignant.
However, a data deception attack may also be the source
of erroneous CGM readings. In [6], it was shown that an
attacker can reverse engineer the radio protocols to launch
passive (e.g., eavesdropping) and active attacks (e.g., replay
and data injection attacks) on an insulin delivery system with
limited resources such as off-the-shelf hardware, and publicly
available information regarding the system components. The
paper concludes by proposing a lightweight cryptography
algorithm as well as emphasizing the benefits of deploying a
wireless body area network where the communication range
is limited to the immediate proximity of the patient. Thus, a
conceivable way to mitigate cyberattacks could be to utilize
in-body communications through the fat tissue which offers
a high data rate [7]. While we acknowledge the necessity of
deploying such a network to improve security, we suggest
that employing a model-based anomaly detector would offer
an extra security layer.

In this work, we consider bias injection attacks on the
CGM where the adversary adds a constant bias to the sensor
readings during meal ingestion to remain stealthier. It is
a special class of false data injection attacks (FDIAs) that
requires minimal model knowledge [8]. The novelty of this
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work is two-fold:
1) We derive the optimal unbiased estimator for the meal

size that minimizes the mean squared estimation error.
The a posteriori meal estimate is used to enhance the
anomaly detection capability.

2) We propose a time-varying threshold for the χ2 de-
tector to handle the effect of meal disturbances on the
postprandial (i.e., after a meal) BG levels.

The rest of this article is organized as follows. Section II
presents the BG dynamics model considered in this work.
Section III presents the proposed anomaly detection and
meal estimation schemes. Section IV provides a numerical
example for the validation of our scheme. Finally, Section V
concludes the paper.

II. MEDTRONIC VIRTUAL PATIENT MODEL
The Medtronic Virtual Patient (MVP) model is a control-

relevant glucoregulatory model for patients with T1D. This
model constitutes the backbone of Medtronic Inc.’s insulin
infusion system [9], which has undergone evaluation through
clinical trials [10]. The model consists of the following set
of ordinary differential equations:

dIsc(t)

dt
= −Isc(t)

τ1
+

Usc(t)

τ1 CI
(1)

dIp(t)

dt
= −Ip(t)

τ2
+

Isc(t)

τ2
(2)

dIe(t)

dt
= −p2 Ie(t) + p2 SI Ip(t) (3)

dG(t)

dt
= −(GEZI + Ie(t))G(t) + EGP +Ra(t) (4)

dGsc(t)

dt
= −Gsc(t)

τsen
+

G(t)

τsen
. (5)

The insulin absorption dynamics are given by (1) and (2)
where Usc(t) (m IU/min) is the insulin infusion rate of the
pump, Isc(t) and Ip(t) are the insulin levels (m IU/L) in the
SC tissue and in plasma, respectively. The interchangeable
time constants τ1 and τ2 determine the rate of insulin
transport from the SC tissue to plasma, and CI defines the
insulin clearance rate.

The insulin-glucose dynamics are given by (3) and (4)
where Ie(t) (1/min) is the effect of insulin, and G(t) (mg/dl)
is the controlled variable, that is the BG level. The parameter
p2 is the reciprocal of the insulin action time constant, SI is
the insulin sensitivity, GEZI is the glucose effectiveness at
zero insulin, and EGP is the endogenous glucose production
rate. The term Ra(t) (mg/dl/min) denotes the rate of glucose
appearance in plasma following a meal intake. The meal
disturbance dynamics are described by the following linear
two-compartment model:

dD(t)

dt
= − 1

τm
D(t) + Ch(t)

dRa(t)

dt
= − 1

τm
Ra(t) +

1

τ2mVG
D(t)

(6)

where Ch(t) (g/min) is the meal intake, and D(t) (g) is the
glucose mass in the input compartment. The parameter τm

defines the time-to-peak of meal absorption, and VG is the
distribution volume of glucose in plasma. Typically, Ch(t)
is modeled as a train of impulses as follows,

Ch(t) =
∑
i∈N

ciδ(t− ti) (7)

where ti (min) is the time instant of the i−th meal intake,
ci (g) is the amount of the carbohydrate (CHO) consumed
at ti, and δ(·) denotes the Dirac delta function.

Finally, the sensor dynamics are modelled as a first order
lag in (5) where the measured variable Gsc(t) (mg/dl) is the
SC glucose level, and τsen is the sensor time constant.

III. ANOMALY DETECTION SCHEME

In safety critical systems such as an AP, it is of paramount
importance to detect anomalies as early as possible. This
section presents the anomaly detection scheme against bias
injection attacks on the CGM in the presence of a meal
disturbance. In particular, a Kalman filter is employed for
residual generation while a χ2 detector is employed for
residual evaluation as shown in Fig.1.

A. Plant Model

To make the analysis tractable, we shall consider a discrete
stochastic linear time-invariant (LTI) for the closed-loop AP
system based on the MVP model presented in Section II. We
consider a discrete model since anomaly detection requires
sampling.

1) Insulin-Glucose Dynamics: The MVP model (1-5) can
be linearized around the equilibrium point at a given target
BG level. The linearized MVP model is then discretized
using zero-order hold sampling. We express the state vector
of the discrete plant as

x(k) ≜ [∆Isc(k) ∆Ip(k) ∆Ie(k) ∆G(k) ∆Gsc(k)]
T

where x(k) ∈ R5 denotes the deviations of the state variables
from their equilibrium values at time step k. A more detailed
explanation of these steps is provided in Appendix II for
better legibility.

We introduce a process noise term w(k) ∈ R5 to account
for modelling errors. The CGM readings are corrupted by
the inherent sensor noise v(k) ∈ R as well as possible
data injection ya(k). We assume {w(k)} and {v(k)} are
mutually independent zero-mean white Gaussian processes
with covariances Q ⪰ 0 and R > 0, respectively.

The adversary is assumed to be capable of altering the
sensor readings at any sampling instant while the insulin
pump is immune to FDIAs. Under these assumptions, the
plant model can be written as

x(k + 1) = Ax(k) +Buu(k) +BdRa(k) + w(k)

y(k) = Cx(k) + v(k) + ya(k).
(8)

Here, the control input u(k) ∈ R defines the insulin infusion
rate relative to the basal insulin rate, and y(k) ∈ R denotes
the CGM measurements. The dynamics of the discrete meal
disturbance Ra(k) are explained in the following section.
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Fig. 1: A block diagram representation of the artificial pancreas along with the proposed anomaly detection scheme. Target
glucose level is a set-point. The signs in the feedback loop is reversed to have positive control gains since the insulin must
be dispensed when the sensor glucose levels exceed the reference value. The controller output is denoted by Uc which must
be saturated below zero as the current pumps cannot remove insulin from the body. The Kalman filter generates the residual
signal using the control input Usc, the measured output Gsc, and the meal disturbance estimate R̂a. A χ2 test is applied to
decide whether an attack has occured.

2) Meal Disturbance Dynamics: The meal subsystem (6)
is discretized by the impulse invariant mapping. Since Ch

is assumed to be impulsive, the meal disturbance dynamics
may be expressed as an autonomous LTI system with instant
changes in the state at meal times as follows,

xm(k + 1) = Amxm(k)

Ra(k) = Cmxm(k)
(9)

where xm(k) = [D(k) Ra(k)]
T . The system (9) starts from

zero initial condition, and at meal times, the state is modified
as xm(ti) = [ci 0]

T +Amxm(ti − 1).

B. Anomaly Detection

An anomaly detector aims to detect any unexpected varia-
tion in the plant variables by evaluating the residual signal(s).
This section presents the proposed anomaly detection scheme
which comprises a Kalman filter, a χ2 detector with a novel
time-varying threshold, and a meal disturbance estimator.

1) Kalman Filter: The state vector x(k) is estimated with
a Kalman filter which is assumed to have reached a steady-
state; thus, it is a fixed gain estimator. The state estimate at
k is defined as x̂(k) ≜ E[x(k)|{y(0), y(1), ..., y(k − 1)}]
where E[·] denotes the expectation operator. Consequently,
the state estimate x̂(k) evolve as follows,

x̂(k + 1) = Āx̂(k) +Buu(k) +BdR̂a(k) +Ky(k) (10)

K = APCT (CPCT +R)−1 (11)

with Ā ≜ A−KC. The steady-state filter gain K is given by
(11) where P is the steady-state estimation error covariance.
The state estimate x̂(k) is given by (10) which includes
the known control input u(k) as well as the unknown meal
disturbance estimate R̂a(k) as explained in Section III-C.

We define the state estimation error x̃(k), the meal dis-
turbance estimation error R̃a(k), the output prediction ŷ(k),
and the residual r(k) as

x̃(k) ≜ x(k)− x̂(k), R̃a(k) ≜ Ra(k)− R̂a(k)

ŷ(k) ≜ Cx̂(k), r(k) ≜ y(k)− ŷ(k).

Thus, the state estimation error dynamics evolve as

x̃(k + 1) = Āx̃(k) +BdR̃a(k) + w(k)−K(v(k) + ya(k))

r(k) = Cx̃(k) + v(k) + ya(k). (12)

The estimation error can be decomposed into 3 parts by in-
voking the superposition principle as x̃(k) = x̃s(k)+x̃d(k)+
x̃a(k). Here, x̃s(k) defines the contribution of the stochastic
inputs to the estimation error. Thus, the steady-state error
covariance can be defined as P = E[x̃s(k)x̃s(k)

T ]. The state
evolution of x̃s(k) is described by the following dynamics:

x̃s(k + 1) = Āx̃s(k) + w(k)−Kv(k)

rs(k) = Cx̃s(k) + v(k).
(13)

Similarly, x̃d(k) defines the contribution to x̃(k) due to meal
disturbances, which evolves as

x̃d(k + 1) = Āx̃d(k) +BdR̃a(k)

rd(k) = Cx̃d(k).
(14)

The last component x̃a(k) is the contribution to x̃(k) due to
data injection, which evolves as

x̃a(k + 1) = Āx̃a(k)−Kya(k)

ra(k) = Cx̃a(k) + ya(k).
(15)

Please note that (15) is valid for generic FDIAs as well as
additive sensor faults. However, this work considers only bias
injection attacks.
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2) χ2 Detector: In the absence of meals and anomalies, it
holds that r(k) = rs(k). In filtering theory, it is established
that rs(k) is zero-mean white Gaussian with covariance
σs ≜ E[rs(k)2] = CPCT +R [11]. Clearly, the distribution
of r(k) changes in the presence of meal disturbances or bias
injection. Hence, a suitable hypothesis test is required to
decide if the residual signal is affected by these factors. To
this end, we define a null hypothesis H0 and an alternative
hypothesis H1 as follows,

H0 : System is operating normally (i.e., ya(k) ≡ 0).
H1 : System is under attack (i.e., ya(k) ̸≡ 0).

A chi-squared test is widely deployed in linear systems
with Gaussian random inputs for such hypothesis testing
problems [12]. In particular, the χ2 test statistic is generated
by taking the squared norm of the residual which is then
normalized by the steady-state (co)variance σs. The test
statistic is compared with a suitably large threshold as

g(k) = rT (k)σ−1
s r(k) = σ−1

s r(k)2
H1

≷
H0

τ. (16)

The random variable g(k) follows a χ2 distribution; hence
the name of the test. Please note that the threshold τ is
occasionally violated even in the absence of anomalies. The
false alarm rate of the test is defined as

α ≜ P(g(k) > τ |H0). (17)

The higher values of τ lower the false alarm rate α, but at the
expense of higher missed detection which is the fundamental
trade-off in choosing τ . In practice, α is chosen as the design
variable (typically, 5%), and the corresponding τ is computed
either numerically or from a χ2 table.

In [13], it was proven that for any generic stochastic LTI
plant, the alarm rate of a χ2 detector strictly increases with
the magnitude of the constant bias. More precisely, for any
two arbitrary vectors r1 ∈ Rm and r2 ∈ Rm that satisfy
∥r1∥2 < ∥r2∥2, the following statement holds:

P(∥σ− 1
2

s (rs(k) + r1)∥22 > τ) < P(∥σ− 1
2

s (rs(k) + r2)∥22 > τ)
(18)

where ∥ · ∥2 denotes the 2-norm of a vector.
It is important to note that in case of a strictly stealthy

FDIA, an attacker with full model knowledge may compute
a non-zero attack sequence ya(k) that does not increase the
alarm probability [14]. A trivial example is when ya(k) ∼
N (0, σs) which clearly does not alter the distribution of r(k),
and thus g(k). Intuitively, the notion of stealthiness restricts
the attack space, and thus its impact, but this is beyond the
scope of this work. The main challenge we shall address
here is to avoid false alarms during meal ingestion while
preserving the detection capability. To this end, we propose
a meal disturbance estimation algorithm in the next section.

C. Meal Disturbance Estimation

A meal intake is parameterized by the time ti and the
size ci of the consumed CHO as can be seen from (7).
Meal announcement is an established practice in AP systems.

In particular, a preemptive insulin bolus proportional to the
CHO size must be administered 15-30 minutes before the
meal for an optimal control of postprandial BG levels [15].
Thus, an a priori estimate of Ra(k) can be obtained from the
meal announcement as follows. For convenience, the user is
assumed to announce each meal time accurately. However,
multiple studies have shown that the manual CHO counting
is error prone (e.g., [16]). Hence, we assume that ci may
differ from the user estimate ĉi. We also assume that the
time interval between each meal intake is sufficiently large
such that x̂m(k) is practically zero before each meal, that
is x̂m(ti − 1) = [0 0]T . Consequently, we compute the a
priori meal disturbance estimate R̂−

a (k) by solving (19) for
x̂m(ti) = [ĉi 0]

T

x̂m(k + 1) = Amx̂m(k)

R̂a(k) = Cmx̂m(k).
(19)

Let c̃i ≜ ci−ĉi be the meal size estimation error. When |c̃i|
is too big, the sequence |rd(k)| assumes large values until the
ingestion is complete. Hence, to avoid misclassifying a meal
intake as an anomaly, the initial user estimate R̂−

a (k) must
somehow be corrected. Clearly, estimating Ra(k) amounts to
estimating ci which can be formulated in a linear regression
fashion as shall be explained in the sequel. First, define an
augmented state vector for the meal estimation error as

x̃m ≜ xm − x̂m, x̃aug(k) ≜ [x̃d(k) x̃m(k)]T . (20)

From (14) and (19), the dynamics of this augmented state
can be derived as

x̃aug(k + 1) = Ãaug x̃aug(k)

rd(k) = C̃aug x̃aug(k)
(21)

with

Ãaug ≜

(
Ā BdCm

02×5 Am

)
, C̃aug ≜ (C 01×2).

When there is no attack, the residual can be split into a zero-
mean stochastic and a deterministic part as r(k) = rs(k) +
rd(k). In particular, rd(k) is practically zero before a meal
due to the assumption of long periods between the intakes.
Furthermore, the postprandial values of rd(k) are determined
by (21). Hence, we collect N samples of r(k) from ti onward
to assess the changes in the residual dynamics. Since (21) is
an autonomous LTI system, the evolution of the output solely
depends on the initial condition, and obeys the following
relationship

r̄d ≜ [rd(ti) rd(ti + 1) . . . rd(ti +N − 1)]T = Ox̃aug(ti)
(22)

where

O ≜


C̃aug

C̃augÃaug

...
C̃augÃ

N−1
aug

 . (23)

There is a linear relationship between the vector r̄d and
the parameter c̃i as can be seen from (22). Thus, one can
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estimate c̃i (not to be confused with ci) using an ordinary
least squares (OLS) regression as follows,

ˆ̃ci ≜ argmin
1

N

ti+N−1∑
j=ti

(r(j)− rd(j))
2

s.t. r̄d = Ox̃aug(ti)

x̃aug(ti) = [0 0 0 0 0 c̃i 0]
T

(24)

where ˆ̃ci is the estimate of c̃i. We suggest to collect minimum
seven samples for the static optimization problem (24) as
x̃aug ∈ R7. Even though (24) is expressed as a constrained
optimization problem for better understandability, it can eas-
ily be converted into an equivalent unconstrained optimiza-
tion problem by substituting the constraint variables in the
objective. Since rs(k) is a zero-mean white homoscedastic
sequence, the OLS estimator (24) is the minimum-variance
unbiased estimator by the virtue of the Gauss-Markov theo-
rem [17].

Once ˆ̃ci is determined, the a posteriori estimate R̂+
a (k)

is computed by solving (19) for the improved estimate
x̂m(ti) = [ĉi + ˆ̃ci 0]T . After the estimation is complete,
the Kalman filter must be reset at the next sampling instant
ti + N to make rd(k) ≈ 0. This can be done for example
by re-running the filter (10) with R̂+

a (k) from k = ti. Thus,
the meal disturbance estimate can be expressed as follows,

R̂a(k) =

{
R̂−

a (k) if k ∈ [ti, ti +N − 1]

R̂+
a (k) otherwise

(25)

Although this method is simple and practical, it takes con-
siderable wait time to collect enough data as the sampling
period of a CGM is typically 5 minutes or more. Therefore,
during the estimation process, the detection threshold τ must
be updated to avoid false alarms as shall be explained in the
next section.

D. Time varying threshold
This section derives a time-varying threshold to avoid false

detection during meal ingestion. Assuming no attack, the
random variable g(k) reads as

g(k) = σ−1
s [rs(k)

2 + 2rs(k)rd(k) + rd(k)
2]. (26)

The following inequality trivially follows from (26)

g(k) ≤ σ−1
s [rs(k)

2 + 2|rs(k)||rd(k)|+ rd(k)
2]. (27)

As noted earlier, rd(k) is deterministic whereas rs(k) is
stochastic whose best prediction is zero at all times due to
the white noise assumption. However, a probabilistic bound
on rs(k) may be obtained from (16) and (17) as follows,

γ ≜
√
τsσs (28)

α = P(|rs(k)| > γ) (29)

where τs defines the steady-state threshold that ensures a
false alarm rate of α when there is no meal disturbance.
The residual statistics change significantly during ingestion
unless an accurate meal announcement is made which may
not always be possible. To this end, we derive a time-varying

detection threshold τ(k) to account for the effect of the meal
during the estimation process, that is ti ≤ k ≤ ti +N − 1.
We propose the following theorem to derive τ(k).

Theorem 3.1: Consider the statistical test in (16) with
τ = τd(k) where

τd(k) ≜ σ−1
s [γ2 + 2γ|rd(k)|+ rd(k)

2]. (30)

The false alarm rate of this test is equal to

P(g(k) > τd(k)) =
α+ P(|rs(k)| > γ + 2|rd(k)|)

2
≤ α.

(31)
Proof: The proof is reported in the Appendix to

improve legibility.
Remark 1: The time-varying τd(k) reduces to the constant

threshold τs in the steady-state. The false alarm rate of the
test (31) is strictly less than α during ingestion.

Remark 2: Please note that τd(k) is not an implementable
threshold as it is impossible to know the sequence of rd(k)
a priori. However, it is reasonable to assume that the initial
meal size estimate is off by at most a certain amount c̃max,
that is |c̃i| < c̃max. Let rmax

d (k) denote the output response
of (21) for x̃aug(ti) = [0 0 0 0 0 c̃max 0]T . Under this
assumption, it follows that rmax

d (k) ≥ |rd(k)|.
Corollary 1.1: Suppose that an implementable time-

varying threshold τmax(k) is defined as

τmax(k) ≜ σ−1
s [γ2 + 2γrmax

d (k) + (rmax
d (k))2]. (32)

Then, the following probability statement holds:

P(g(k) > τmax(k)) ≤ P(g(k) > τd(k)) ≤ α. (33)
Proof: Since τmax(k) ≥ τd(k), the claim of the

corollary directly follows from (31).
The sensitivity of the test (16) with τ = τmax(k) depends

on the magnitude of c̃max. If it is too large, τmax(k) might
be overly conservative in the sense that the detection rate
becomes drastically low. However, thanks to the meal esti-
mator presented in Section III-C, this conservative threshold
is only necessitated during data collection. Hence, we suggest
a piecewise detection threshold as follows,

τ(k) =

{
τmax(k) if k ∈ [ti, ti +N − 1]

τs otherwise
(34)

After the a posteriori meal estimate is obtained, we set τ(k)
back to τs without having to wait for the ingestion to be
completed.

All the analysis presented in this section presumed no
attack scenario which seems to defeat the main purpose of
this work. Clearly, this anomaly detection scheme is sensitive
to the injection attacks that occur outside the time interval
[ti, ti +N − 1]. The threshold in (34) can also detect large
biases if the attack occurs within this interval. However, a
sufficiently small bias can bypass the detector. Nevertheless,
the attack should be detected after resetting the filter with
the attacked meal disturbance estimate since τ(k) is also set
back to τs. The detection time will depend on the size and
the rate of the injected bias.
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IV. NUMERICAL SIMULATION

This section presents a validation of the proposed anomaly
detection scheme by a numerical simulation. Table I re-
ports the numerical values of the MVP model parameters
identified for a particular virtual subject in [18], which
will be used in the simulations. The process noise covari-
ance Q is assumed to be a diagonal matrix with entries
10−2, 10−3, 10−8, 10−2, and 10−1, respectively. The vari-
ance of the sensor noise R is taken as unity.

We employ a discrete causal PID controller with the
following pulse transfer function:

Kp +
(Kp/Ti)Tsz

z − 1
+

KpTdNf (z − 1)

(1 +NfTs)z − 1
. (35)

The target glucose level is set to 100 mg/dl. The control
gains are chosen as follows: Kp = 0.2 (mU/min)/(mg/dl),
Ti = 450 (min), and Td = 60 (min). The filter coefficient
Nf is chosen as 0.01. The numerical values of the system
matrices in (8) and (9) are obtained from Table I for the
sampling period Ts = 5 minutes.

We have performed two closed-loop simulations with and
without a bias injection for the validation of our results. The
simulations started from the steady-state, and ran for an eight
hour long interval. We assumed a single meal intake of 75
grams occurring at exactly one hour after the commence of
the simulation. The maximum allowable mismatch between
the true and the user estimate of the meal size (i.e., c̃max)
was chosen to be 20 grams.

The malicious goal of the attacker was to drive the patient
into hypoglycemia by adding a bias of 40 (mg/dl) on the
CGM. Since this is a very large bias, in order to remain
undetected, the attacker was assumed to slowly inject the
bias by utilizing the step response of a low-pass filter rather
than adding the target bias at once. The filter used for this
purpose was a critically damped second order system which
is described by the following pulse transfer function:

1.21 10−3 z + 0.9672

(z − 0.9512)2
(36)

To evaluate the worst case scenario, the start of the bias
injection was selected to coincide with the time of the meal
intake. Fig. 2b visualizes this attack sequence.

TABLE I: The MVP model parameters with their numerical
values identified for a certain virtual subject.

Parameter Value Value
CI 2.01 [L/min]
τ1 49 [min]
τ2 47 [min]
p2 1.06 10−2 [min−1]
SI 8.11 10−4 [L/mU/min]
GEZI 2.2 10−3 [min−1]
EGP 1.33 [mg/dl/min]
VG 253 [dl]
τm 50 [min]
τsen 10 [min]

Fig. 2a shows the trajectories of the BG and the measured
glucose levels. The sensor glucose readings are lagging
behind the actual BG levels as noted in Section I. The
positive bias injected by the attacker causes the closed-loop
controller to command the pump to deliver more insulin than
necessary. This is nicely shown in Fig. 2a where the plasma
glucose levels of the patient becomes dangerously low while
the sensor glucose readings remain around the target value.

Fig. 2c reports the results of the online meal disturbance
estimation algorithm described in Section III-C. We have
used the CVX toolbox in Matlab [19] to obtain the a
posteriori meal size estimate which is given by the convex
optimization problem (25). Seven samples of the residual
were collected for meal estimation which amounts to a wait
time of half an hour. The user estimate of the meal size was
60 g. When there was no attack, the a posteriori estimate
turned out to be 72 g, which is fairly close to the true
value. However, when there was an attack, the algorithm
overestimated the meal size as 79 g.

Finally, Fig. 2d demonstrates the performance of the pro-
posed anomaly detection algorithm. In particular, we provide
the plots of the χ2 test results for the attack and no attack
scenarios. The false alarm rate α was set to 5 % which
stipulates that the steady-state threshold τs = 3.841. As can
be seen in Fig. 2d, a few false alarms were triggered in the
no attack scenario. Moreover, the number of false alarms has
agreed with the theoretical rate α even for a relatively small
sample size. This indicates that (25) provides a reasonably
accurate estimate of the meal size in the absence of attacks.

As can be seen in Fig. 2d, the attack was detected soon
after the a posteriori meal estimation was computed. It is
interesting to note that the conservative threshold τmax(k) is
also able to detect persistent attacks. However, the detection
time is significantly delayed in this case. Furthermore, the
attacker can even bypass the detector by ceasing the data
injection towards the end of the meal ingestion. However,
this is not possible for τ(k) where the threshold is set back
to the steady-state value after obtaining R̂+

a .

V. CONCLUSION

In this work, we have proposed a novel anomaly detection
algorithm against bias injection attacks on the glucose sensor
deployed in an AP in the presence of meal disturbances. Our
algorithm utilizes a χ2 detector with a time-varying threshold
whose false alarm rate has been shown to be bounded by the
steady-state alarm rate. The detection capability is further en-
hanced through an optimal a posteriori meal estimator. The
efficacy of the proposed algorithm has been demonstrated
through a numerical simulation. However, a more in depth
investigation for various attack scenarios is needed prior to
clinical trials. Future work will include the analysis of more
sophisticated attack strategies such as stealthy FDIAs. We
will also investigate the benefits of employing a windowed
χ2 detector that uses current and past measurements of the
residual.
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Fig. 2: Simulation results of the proposed meal estimation, and the anomaly detection algorithm.

APPENDIX I
PROOF OF THEOREM 3.1

This section presents a proof of Theorem 3.1 with the aid
of the following lemmas:

Lemma 1.1: The following statement is valid during a
single meal absorption.

P(sgn(rs(k)rd(k)) = ±1) = 1/2

where sgn(·) denotes the sign function.
Proof: Since rs(k) is a zero-mean Gaussian variable,

and rd(k) does not alter sign during a single meal absorption,
it holds that P(rs(k)rd(k) < 0) = P(rs(k)rd(k) > 0) = 1/2
which is equivalent to the statement of the lemma.

Please note that the claim of the lemma is not guaranteed
for multiple meals because rd(k) may alter sign if, for
example, the first meal size is overestimated while the second
is underestimated. However, we need not consider this case

since the initial user estimate of the meal size is corrected
soon after the intake.

Lemma 1.2: The following statements hold true

rd(k) = 0 ⇐⇒ P(sgn(rs(k)rd(k)) = 0) = 1

rd(k) ̸= 0 ⇐⇒ P(sgn(rs(k)rd(k)) = 0) = 0.
Proof: The statements trivially follow from the fact that

sgn(x) = 0 ⇐⇒ x = 0.
Next, we present the proof of Theorem 3.1:

Proof: From (26) and (30), we obtain

g(k) > τd(k) ⇐⇒ r2s(k)−γ2+2(rs(k)rd(k)−γ|rd(k)|) > 0.

Using the identity x = |x|sgn(x), and reordering terms, we
can rewrite this inequality as follows,

rs(k)
2 − γ2 + 2|rd(k)|(|rs(k)|sgn(rs(k)rd(k))− γ) > 0.

For convenience of notation, we drop the time argument in
rs(k) and rd(k). Now that the range of the sgn(·) function
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is {−1, 0, 1}, we define two variables η+ and η− as

η+ ≜ r2s − γ2 + 2|rd|(|rs| − γ) = (|rs| − γ)(|rs|+ γ + 2|rd|)
η− ≜ r2s − γ2 − 2|rd|(|rs|+ γ) = (|rs|+ γ)(|rs| − γ − 2|rd|).

Next, we partition the probability P(χ2(k) > τ2d (k)) as

P(η+ > 0|sgn(rsrd) = 1) P(sgn(rsrd) = 1) +

P(r2s > γ2|sgn(rsrd) = 0) P(sgn(rsrd) = 0) +

P(η− > 0|sgn(rsrd) = −1) P(sgn(rsrd) = −1).

Since η+ > 0 ⇐⇒ |rs| > γ and η− > 0 ⇐⇒ |rs| > γ + 2|rd|
the proof follows from Lemmas 1.1, 1.2, and (29).

APPENDIX II
LINEARIZATION OF THE MVP MODEL

The MVP model (1-5) has five states as

x(t) = [Isc(t) Ip(t) Ie(t) G(t) Gsc(t)]
T

The equilibrium point of this nonlinear model in the absence
of meal disturbances (i.e., Ra(t) = 0) is obtained by solving
ẋ(t) = 0. The equilibrium values of the state variables and
the control input are denoted by the asterisk superscript. The
equilibrium point (x∗, u∗) is easily computed as

x∗ = [
I∗e
SI

I∗e
SI

I∗e G∗ G∗
sc]

T , u∗ =
CII

∗
e

SI
(37)

with I∗e = EGP/G∗ − GEZI . Then, a continuous linear
model for the insulin-glucose dynamics is obtained from the
Jacobian linearization of equations (1-5) around (x∗ u∗). The
state vector of the linear system defines the deviation of the
original state from the equilibrium as ∆x(t) = x(t) − x∗.
Similarly, for the control input the following relationship
holds u(t) = Usc(t) − u∗. The target glucose G∗ is chosen
as 100 mg/dl in the numerical example presented in Section
IV. With the selection of the target glucose level, the rest of
the numerical values of the linearized system directly follows
from (37) and Table I. The simulations are then performed
on the discretized plant model as explained in Section III-A.

REFERENCES

[1] A. Haidar, “The artificial pancreas: How closed-loop control is revo-
lutionizing diabetes,” IEEE Control Systems Magazine, vol. 36, no. 5,
pp. 28–47, 2016.

[2] K. Kölle, A. L. Fougner, K. A. Frelsøy Unstad, and Øyvind
Stavdahl, “Fault detection in glucose control: Is it time
to move beyond cgm data?” IFAC-PapersOnLine, vol. 51,
no. 27, pp. 180–185, 2018, 10th IFAC Symposium on
Biological and Medical Systems BMS 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896318333627

[3] X. Yu, M. Rashid, J. Feng, N. Hobbs, I. Hajizadeh, S. Samadi,
M. Sevil, C. Lazaro, Z. Maloney, and A. Cinar, “Fault
detection in continuous glucose monitoring sensors for artificial
pancreas systems,” IFAC-PapersOnLine, vol. 51, no. 18, pp.
714 – 719, 2018, 10th IFAC Symposium on Advanced Control
of Chemical Processes ADCHEM 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2405896318319566

[4] A. Facchinetti, S. Del Favero, G. Sparacino, and C. Cobelli, “De-
tecting failures of the glucose sensor-insulin pump system: Improved
overnight safety monitoring for type-1 diabetes,” in 2011 Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society, 2011, pp. 4947–4950.

[5] K. Turksoy, A. Roy, and A. Cinar, “Real-time model-based fault detec-
tion of continuous glucose sensor measurements,” IEEE Transactions
on Biomedical Engineering, vol. 64, no. 7, pp. 1437–1445, 2017.

[6] Chunxiao Li, A. Raghunathan, and N. K. Jha, “Hijacking an insulin
pump: Security attacks and defenses for a diabetes therapy system,”
in 2011 IEEE 13th International Conference on e-Health Networking,
Applications and Services, 2011, pp. 150–156.

[7] N. B. Asan, E. Hassan, J. Velander, S. R. Mohd Shah, D. Noreland,
T. J. Blokhuis, E. Wadbro, M. Berggren, T. Voigt, and R. Augustine,
“Characterization of the fat channel for intra-body communication at
r-band frequencies,” Sensors, vol. 18, no. 9, p. 2752, 2018.
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