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Abstract— Delay injection attacks on nonlinear control sys-
tems may trigger instability mechanisms like finite escape time
dynamics. The paper guards against such attacks by show-
ing how a recursive algorithm for identification of nonlinear
dynamics and delay can simultaneously provide parameter es-
timates for controller tuning and detection of delay injection in
the feedback path. The attack methodology is illustrated using
a simulated feedback linearized automotive cruise controller
where the attack is disguised, but anyway rapidly detected.

I. INTRODUCTION

The paper addresses cyber attacks by injecting delay into
nonlinear feedback control systems. Due to the nonlinear
system dynamics and the nonlinear controller, destabilization
mechanisms with delay become more intricate than for linear
systems [10], [12], [23]. To counter such attacks, the paper
proposes joint recursive identification of the delay and the
nonlinear system dynamics. Identification of the nonlinear
dynamics is needed for accurate estimation of the delay if
model-free [3] or adaptive [4] controller design is applied.

The deployment of networked feedback control systems
with wireless delay increases the need for improved methods
for attack detection and mitigation, [1], [8]. Systems under
delay injection attack have been studied previously in [5],
[13], [29], [30], where the latter discussed delay attack
strategies, and proposed recursive identification of delay and
dynamics for defense of linear servo and regulator feedback
systems. Robust controller design as a means for mitigation
of delay attacks was studied in [20], [21]. However, the
understanding on how to rapidly detect disguised delay
injection attacks on nonlinear control systems with unknown
or partially known dynamics remains limited.

Identification of delay in linear dynamic systems has been
extensively studied, see e.g. [6], [11] and [14] for exam-
ples of frequency and time-domain methods. For nonlinear
systems series expansions [7], or sequential Monte-Carlo
methods, [24], may be applied for joint identification of delay
and nonlinear dynamics. However, except for the bootstrap
particle filter these methods are mostly based on batch
processing, while a rapid identification of delay changes
would be better served by recursive identification [15].

The main contribution of the paper demonstrates that joint
recursive identification of delay and nonlinear dynamics can
efficiently detect a delay injection attack in a nonlinear
feedback regulator loop, despite the fact that the attack
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is almost perfectly disguised in open-loop. The algorithm
applied is of output error type [26], which is a method known
to perform well in linear cases [6]. Additional contributions
isolate new destabilization mechanisms that may be used by a
delay injection attacker, and provides numerical illustrations
for nonlinear cruise control dynamics, [2], [9], [16], [31].

The organization is as follows. The control system is
described in Section II. Delay attacks on nonlinear systems in
general are discussed in Section III. The recursive algorithm
used for delay attack detection is reviewed in Section IV,
while Section V illustrates a disguised delay injection attack
and its detection for a feedback linearized automotive cruise
controller. Conclusions follow in Section VI.

II. CONTROL SYSTEM DESCRIPTION

To study delay injection attacks the following nonlinear
system is considered

ẋ(t) = fθS
(x(t)) + gθS

(x(t)))u(t), (1)

y(t) = h(x(t)). (2)

Here the state vector x(t), the input signal vector u(t) and
the output signal vector y(t) are given by

x(t) = (x1(t) ... xn(t))
T
, (3)

u(t) = (u1(t) ... uK(t))
T
, (4)

y(t) = (y1(t) ... yL)
T
. (5)

The parameter vector of the dynamics, θS , is defined in
detail in Section IV. Here it is assumed to be fixed and
for example obtained after an initial identification run. The
parameter dependence of f and g is therefore indicated by
a subscript. In (1) and (2), f(·), g(·) and h(·) are nonlinear
vector functions and the vectors (3), (4) and (5) are indexed
by the subscripts i, k, l, respectively. T denotes transpose.

In the present paper, the discussion is limited to the
following standard input-state feedback linearization method:

Lemma 1 ([12], Definition 12.1): Assume that the nonlin-
ear system (1) with fθS

: Dx → Rn and gθS
: Dx → Rn×K

has continuous derivatives of sufficient order on Dx ⊂ Rn.
The system is then input-state linearizable if there exists a
diffeomorphism TθS

: Dx → Rn such that Dz = TθS
(Dx)

contains the origin and the change of variables z = TθS
(x)

transforms (1) to

ż(t) = AθS
z(t) +BθS

b−1
θS

(x(t)) (u(t)− aθS
(x(t))) ,

(AθS
,BθS

) controllable and bθS
(x) nonsingular, for x ∈

Dx. �



Fig. 1. Block diagram of the input-state feedback linearization of the automotive cruise control feedback loop treated in Section V. All variables are
defined in Section V. Note that the outer controller handles the additive disturbance d(t), and the control signal limitation, and that it may or may not
depend on θS . The operator L(·) denotes Laplace-transformation. The block diagram appears in continuous time, with the delay injection attack red.

Lemma 1 handles multi-dimensional additive and multi-
plicative nonlinearities and provides a method of cancellation
by combined multi-dimensional subtraction and division. As
an example, the block diagram of Fig. 1 applies subtraction
of the quadratic air resistance nonlinearity in the automotive
cruise control example of Section V. As can be seen, a
special feature of the treated control problem of the paper
is the selection between open-loop and closed-loop control
that is assumed to be either under manual control, or to be
controlled by external logic. Note that two switches with
simultaneous operation are needed in Fig. 1, one for the
feedback linearization and one for the outer feedback loop.

III. DELAY ATTACK

A. Attack Objectives
The objectives when attacking a regulator loop include

response time violations, for example disturbing cascaded
production stations. An immediate attack mechanism works
best in the forward path from controller to system dynamics.
A delayed and hidden attack can be implemented with a
feedback path delay injection attack as shown in Fig. 1. That
attack would not have any effect on the response time until
the loop is closed.

Destabilization is the ultimate attack objective. For linear
systems the destabilization is obtained for large enough
delay, provided that the gain of the feedback loop is large
enough as implied by the Nyquist criterion [23]. This fol-
lows since the delayed loop gain ĝT (jω) suffers from an
associated phase loss, as in

ĝT (jω) = e−jωT ĝ(jω), (6)

where ω is the angular frequency, T is the injected delay and
ĝ(jω) is the loop gain of the linear system.

B. Nonlinear Destabilization
For nonlinear systems the destabilizing mechanism may

be more involved. For example, assume that the input-state

linearization of Fig. 1 is not perfectly tuned, so that the
forward path contains a term proportional to the square of the
velocity, with kθS

− ρCx1

2m > 0. When the driver switches to
closed loop cruise control and if the injected delay is large
enough, the input-state linearization loop has finite escape
time dynamics during a time T until the outer loop feedback
takes effect. In the example of Section V, the parameters
and attack delay are such that this does not occur, but the
possibility may be important for other systems with very
fast dynamics. This effect motivates why further research on
destabilization mechanisms for non-linear systems caused by
injected delay is of central importance to maintain integrity
of critical feedback control loops.

C. Delay Injection

Manipulation of time stamps can be used to tamper with
control and/or feedback signals. For example, the attacker
could decrease the values of the time stamps of the control
signal so that they appear to arrive earlier than at the nominal
arrival time for which the controller has been designed. If
the manipulation passes undetected, the system may delay
control actions, thereby reducing the stability margin. Similar
ideas could be applied in the feedback path.

A physical delay may be more difficult to implement since
queues may need to be created in the attacked software.

D. Disguised Attack

In case of a physical delay injection attack, e.g. by
addition of queuing delay, time stamps may reveal the attack.
Therefore, physical delay injection needs to be accompanied
by time stamp manipulation that has the potential to disguise
the attack, both in the forward path and in the feedback path.

Another approach could be to hide the injected average
delay by jitter, provided that jitter is normally present in the
system as in [29].

For systems that can be operated both in open and closed
loop it is advantageous to perform the delay injection in the



feedback path, as close to the controller as possible [30]. The
reason is that there will be no effect in the forward path that
could be sensed by a human operator or driver, as a perceived
slow system response. The selection of the feedback path for
delay injection therefore disguises the attack perfectly from
being perceived in the forward path. This situation persists
until the feedback loop is closed at which point the attack
takes immediate and full effect.

IV. NONLINEAR RECURSIVE DELAY DETECTION

This section reviews the algorithm of [26] that is applied
for joint recursive identification of delay and nonlinear
dynamics in the paper. The convergence is analysed in [28],
where it is shown that the correct parameter vector is in the
set towards which the algorithm converges globally.

A. Nonlinear model with Delay

The nonlinear model is an ordinary differential equation
(ODE) in state space form, with a single delay. Since the
ODE is selected to be time invariant, it does not matter if
the delay appears at the input or at the output. The input and
state vectors of [26] are more general than in (1)-(4) which
implies that (1)-(4) are in the model set of [26]. The input
and state vectors u(t) and x̂(t,θS) of [26] are

u(t) =
(
uT
1 (t) ... uT

K(t)
)T

(7)

uk(t) =
(
uk(t) ... u

(nk)
k (t)

)T
, k = 1, ...,K, (8)

x̂(t,θS) = (x̂1(t,θS) ... x̂n(t,θS))
T
. (9)

Here the superscript (n) denotes differentiation n times. θS is
the parameter vector of the ODE. The ODE is selected with
one parameterized nonlinear right hand side state component
that is integrated by a chain of integrators. This gives

˙̂x(t,θS)

=


˙̂x1(t,θS)

...
˙̂xn−1(t,θS)
˙̂xn(t,θS)

 =


x̂2(t,θS)

...
x̂n(t,θS)

f (x̂(t,θS),u(t),θS)

 (10)

ŷ(t, θT ,θS) = Cx̂(t− θT ,θS), (11)

where ŷ(t, θT ,θS) is the model output, C is the output
matrix, and

θT = T (12)

is the delay parameter. The total parameter vector becomes

θ =
(
θT θT

S

)T
. (13)

Motivated by [22], (10) is parameterized by the polynomial

f(x̂(t,θS),u(t),θS) = φT (x̂(t,θS),u(t))θS , (14)

φT (x̂(t,θS),u(t))

=

(
1 ...

(
u
(nK)
K (t)

)I
u
(nK )
K ...

(
u
(nK−1)
K (t)

)I
u
(nK−1)
K

(
u
(nK)
K (t)

)I
u
(nK )
K ...(

(x̂1(t,θS))
Ix1 ... (x̂n(t,θS))

Ixn (u1(t))
Iu1

...
(
u
(nK)
K (t)

)I
u
(nK )
K

))
, (15)

where Im denotes a maximum degree, cf. [26], [27]. The
regression vector component 1 corresponds to θS,0...0, where

θT
S =

(
θS,0...0 ... θS,0...I

u
(nK )
K

... θS,0...I
u
(nK−1)
K

I
u
(nK )
K

... θS,Ix1 ...Iu(nK )
K

)
. (16)

The parameter and regression vectors are filled with terms
from left to right when the indices of the parameter vector
vary. The rightmost index varies the fastest. The leftmost
index represents the first state component of (9), while the
rightmost index represents the last input signal component.
Examples that provide further clarification of the notation
appear in [25], [27] and [28].

The delay model is based on interpolation between mul-
tiple ODE models, each time shifted backwards with one
sampling period TS . The fractional delay is obtained by
interpolation between adjacent ODE models as

θT = T = mTS + Tf , m ∈ [0,M − 1]. (17)

Here mTS is the integer part of the delay where m is the
number of sampling periods. The maximum delay is MTS
and Tf denotes the fractional delay

0 ≤ Tf < TS . (18)

Define M + 1 models in terms of um(t) and x̂m(t,θS) by

um(t) = u(t−mTS), m = 0, ...,M, (19)

x̂m(t,θS) = x̂(t−mTS ,θS), m = 0, ...,M, (20)

Because of time invariance, (20) can be generated by using
the m:th delayed input of (19) to solve the ODE.

The recursive identification algorithm performs interpo-
lation of inputs, state vectors and gradients, towards the
running estimate of the delay

θ̂T (t) = m̂(t)TS + T̂f (t), m̂(t) ∈ [0,M − 1]. (21)

Linear interpolation is applied to get

x̂(t− θ̂T (t), θ̂S(t))

=

(
1− T̂f (t)

TS

)
x̂m̂(t, θ̂S(t)) +

T̂f (t)

TS
x̂m̂+1(t, θ̂S(t)).

(22)
M + 1 integer delay models are defined by (19)-(22). The
restriction (17) will keep the estimate interior to the delay
range of the multiple models.

The output of the model is obtained from (11)

ŷ(t, θ̂T (t), θ̂S(t))

= ŷ(t− θ̂T (t), θ̂S(t)) = Cx̂(t− θ̂T (t), θ̂S(t)). (23)

The same interpolation is applied for the gradients, cf. [26].



B. Discretization and Scaling

The ODE model and the gradient matrix ODE then need to
be discretized. The reader is referred to [26] for a description
of the discretization of the gradients of (10) and (11).

In the present paper, the discretization is augmented with
scaling of TS as proposed by [25]. Briefly, the idea is to
apply a scaled value of TS when the ODE and the associated
gradient is discretized. The scaled sampling period is denoted

T s
S = αTS , (24)

where the superscript s denotes scaling. The analysis of [25]
shows why this scaling can improve the convergence prop-
erties significantly, in particular when it comes to avoiding
convergence to false local minima. The reason is believed to
be the improved conditioning of the optimization problem
that results from the changed scaling of the states, see
Theorems 1 and 3 of [25]. A consequence of the scaling
is that the identified parameter vector θS is changed to θs

S ,
while θT = θsT . However, as shown by Theorem 2 of [25]
there is a linear relation between θS and θs

S , which recovers
θS .

To describe the discretization, (20) is first generated as

x̂s
m(t+ Ts, θ̂

s
S(t))

= x̂s
m−1(t, θ̂

s
S(t− TS)), m = 1, ...,M, (25)

Following this step, x̂s
0(t + Ts, θ̂

s
S(t)) is generated by the

Euler forward integration method [17]. This results in
x̂s0,1(t+ TS , θ̂

s
S(t))

...
x̂s0,n−1(t+ TS , θ̂

s
S(t))

x̂s0,n(t+ TS , θ̂
s
S(t))

 =


x̂s0,1(t, θ̂

s
S(t))

...
x̂s0,n−1(t, θ̂

s
S(t))

x̂s0,n(t, θ̂
s
S(t))



+αTS


x̂s0,2(t, θ̂

s
S(t))

...
x̂s0,n(t, θ̂

s
S(t))

φT (x̂s
0(t, θ̂

s
S(t)),u(t))θ̂

s
S(t)

 . (26)

Here the first index of the subscript of the state components
refers to m = 0, while the second index denotes the state
component number.

C. The recursive identification algorithm

To ensure that the parameter estimate remains in the model
set, a projection algorithm is needed. The model set DM
underpinning the projection algorithm is approximated with
the linearized asymptotically stable models that have a delay
in the set of (17), i.e.

Ds
M

=
{(
θsT (θs

S)
T
)T | |eig(Ss(θs))| < 1− κ,m ∈ [0,M − 1]

}
(27)

where κ > 0 is a small number. Furthermore

Ss(θs)

= In + αTS



0 1 0 . . . 0

0 0 1
. . . 0

...
...

. . . . . . 0
0 0 . . . 0 1

(θs)
T dφs(xs(t,θs))

dxs(t,θs)

 .

(28)
The scaled algorithm of [26] now follows by minimization

of the criterion

V (θs,Λs) =
1

2
lim
t→∞

E[(εs(t,θs)T (Λs(t,θs))−1εs(t,θs)

+ ln det (Λs(t,θs))], (29)

using the Gauss Newton method of [15], where Λs(t) is the
covariance matrix of the prediction error

εs(t,θs) = y(t)− ŷs(t, θ̂T (t), θ̂
s
S(t)). (30)

The resulting algorithm updates θ̂s(t), Λs(t) and the
Hessian Rs(t), given scaled model and gradient predictions.
At each time step, it is checked if the estimates are in the
model set (27). If not, no update is performed. All further
algorithmic details are available in [26] and [28].

D. Tuning

The running estimates θ̂s(t), Λs(t) and Rs(t) need to
be initialized. Typically the matrices can be initialized as
diagonal matrices, with diagonal elements of the same order
of magnitude as the squared expected initial prediction errors
and the expected initial squared parameter errors. Often a
single parameter can be used for each matrix, as shown
by the free software package [27]. In the present tracking
application the exponential forgetting factor should be 1.

The scale factor α should be set so that the magnitude of
the state components are equalized. Experimentation may be
needed using plots of the time evolution of the eigenvalues
of Rs(t) obtained from [27].

Another relevant aspect concerns model selection. For
[26], this amounts to selection of what polynomial terms that
are included in the identified model. The software package
[27] provides selection flexibility. It is particularly important
to make selections that strengthens observability.

E. Potential Detection Mechanisms

The proposed detection mechanism is based on the delay
parameter θ̂T (t) that is identified by the algorithm of [26].
The idea is to define an allowed range for θ̂T (t) during
normal operation, and to define a detection threshold θT,max

such that

θ̂T (t) > θT,max (31)

triggers an alarm that, for example, disables closed loop
operation. The details of optimal threshold setting could be
based on an analysis of the false alarm rate. The details are
left for further research.



V. NUMERICAL EXAMPLE - AUTOMOTIVE CRUISE
CONTROL

A. Feedback Linearized Controller

A vehicle traveling with a velocity x1(t) is subject to
a number of forces, including engine thrust, friction, air
resistance and gravitational forces in hilly terrain, see [2],
[16], [31]. In the present work, the friction and gravitational
forces are treated as a lumped system disturbance d(t). The
forces listed and Newton’s second law give

ẋ1(t) = a(t)− ρFCx1

2m
x21(t)− d(t). (32)

Here a(t) is the accelerator command, m is the mass of the
vehicle, ρ is the density of the air, F is the frontal area and
Cx1

is the air resistance coefficient.
The dynamics of (32) is strongly nonlinear. Noting that

the structure of (32) equals that of (1) with

u(t) = a(t)− d(t), (33)

gθ0
S
(x(t)) = 1, (34)

fθ0
S
(x(t)) = −ρFCx1

2m
x21(t), (35)

it follows that feedback linearization according to Lemma 1
can be applied. Here θ0

S
indicates the true parameter vector.

The additive input-state linearizing transformation

u1(t) = a(t)− kθS
x21(t) + δx1(t) (36)

transforms (32) to

ẋ1(t) = u1(t) +

(
kθS

− ρFCx1

2m

)
x21(t)− δx1(t)− d(t)

= −δx1(t) + u1(t)− d(t), (37)

provided that

kθS
= kθ0

S
=
ρFCx1

2m
. (38)

Here δ > 0 is a small constant selected to avoid pure inte-
gration in the stability analysis of Section V.C. Elsewhere,
δ = 0 is used.

The next step is to design an outer regulator to generate
u1(t). Equation (37) contains an integrator, therefore it
may seem that integrating outer loop control is not needed.
However, (38) cannot be expected to hold exactly. In such
cases a small signal analysis shows that the integrator pole
is shifted to a pole beside the imaginary axis, which means
that integrating outer loop control is anyway advisable to
regulate away static disturbance components.

In [30] it was shown how integrating LQG control could
be applied to a conventionally linearized version of (32), with
(γ/m)x1(t) replacing the quadratic function. The resulting
controller turned out to be the PI-controller

C(s) = KP +
1

TI

1

s
(39)

where s is the Laplace transform variable, KP is the pro-
portional gain and TI is the integration time. To allow a
comparison to [30], the same design methodology as in

Fig. 2. Block diagram for which the Popov criterion holds. Note that carets
are used to denote the signals of the figure.

[30] is applied here. The controller C(s) filters the control
error between the reference signal yref1 (s) and the potentially
delayed attacked output signal e−sT y1(s).

The acceleration command is limited by the maximum
thrust, and by the maximum braking/electrical re-generation
that is allowed. Noting that d(t) is bounded and small in
comparison to the acceleration command and air resistance,
the acceleration command limitation can be moved to after
u1 of Fig. 1 by a slight reduction of the range of u1(t). The
limitation is then given by

u1(t) = fu(u(t))

=

 u1,max, u1,max < u(t)
u(t) u1,min ≤ u(t) ≤ u1,max

u1,min u(t) < u1,min

. (40)

where u(t) is defined by Fig. 1, and where u1,min and u1,max

are the lower and upper limits of u(t), respectively.

B. Feedback Signaling Delay Injection

As motivated in section III.D, a disguised delay injection
attack is assumed, marked with red in Fig. 1, and given by

y1(t− T ) = L−1
(
e−sTL(y1(t))

)
. (41)

C. Stability

Assume that (38) holds exactly, i.e. that

A1) kθS
= kθ0

S
=

ρFCx1

2m .
Then the regulator problem of (37) is linear except for the
static nonlinear limitation and no dependence on θS appears.
Because of the delay injection attack, the global L2-stability
of the system can be analysed by application of the input-
output version of the Popov criterion [18], [19], [23], [33].
The analysis builds on the definitions D1-D5 of the appendix,
that can be used to prove

Lemma 2 (Popov Criterion, [23] Theorem 6.7.63): Con-
sider the system of Fig. 2. Assume that the inverse Laplace
transform of the transfer function ĝ(s) fulfils

g(·) ∈ A, ġ(·) ∈ A,

that the time invariant continuous static nonlinearity ψ(·)
fulfils

0 ≤ σψ(σ) ≤ βσ2,



and that ǔ1 ∈ L2, ǔ2 ∈ L2, ˙̌u2 ∈ L2. Under these conditions
the system is L2-stable if there exist constants q̌, δP , such
that the Popov plot

ω ∈ [0,∞) → Re[ĝ(jω)] + jωIm[ĝ(jω)] ∈ C

is entirely to the right of a line through −1/β+δP +j0 with
slope 1/q̌, for some q̌ ≥ 0 and some δP > 0. �

Proof: See [23], Section 6.7.
To apply the Popov criterion, the signals, transfer functions

and static nonlinearities of Fig. 2 that appear in Lemma
2 need to be computed in terms of quantities of Fig. 1.
Assumptions then need to be imposed on the signals, such
that the conditions of Lemma 2 are fulfilled. This will prove
that Lemma 2 holds and enable its application.

Noting that delays can be freely moved through a static
nonlinearity and that linear blocks can be re-ordered, an
analysis of Fig. 1 and Fig. 2 immediately shows that

ĝ(s) = e−sTC(s)
1

s+ δ
, (42)

ψ(u) = fu(u), (43)

ǔ1(s) = d(s), (44)

ǔ2(s) = C(s)yref1 (s). (45)

The requirements on g(t) and ġ(t) means that ĝ(s) needs to
be asymptotically stable and strictly proper. To ensure that
these requirements hold, introduce the assumption

A2) C(s) is asymptotically stable and proper.
A2 is true provided that the PI controller is replaced by the
leaky PI controller KP+

1
TI

1
(s+δ) . A1 and A2 then imply that

g(·) ∈ A and ġ(·) ∈ A. Furthermore, the static nonlinearity
meets the continuity condition. The requirements on ǔ1 and
ǔ2 are secured by the following assumptions

A3) d(s) is the Laplace transform of a signal generated
by asymptotically stable and proper filtering.

A4) yref1 (s) is the Laplace transform of a signal gen-
erated by asymptotically stable and strictly proper
filtering with static gain yref1 .

The assumptions A3 and A4 are not restrictive in practice.
A3 immediately implies that ǔ1 ∈ L2 , while A2 and A4
imply that ǔ2 ∈ L2 and ˙̌u2 ∈ L2. This gives

Theorem 1: Consider the control system of Fig. 1 and
assume that A1-A4 hold. Then Lemma 2 holds. �

It is stressed that a small δ > 0 is needed for the stringent
validity of the Popov criterion. It is, however, conjectured
that the result holds unaltered for Fig. 1 when δ → 0.

D. Destabilization at Activation

To illustrate the effect of a delay injection attack in the
feedback path, the closed loop cruise control dynamics was
simulated. The parameters of (32) were adjusted to give a
maximum velocity of 60 m/s in stationary state when a
maximum acceleration of u1,max = 3.0 m/s2 was applied
with d = 0.0m/s2. The maximum retardation was u1,min =
−3.0 m/s2. The mass of the vehicle was m = 1500 kg.
The state penalties of [30] were selected as q11 = 3.00 and

Fig. 3. Closed loop performance for perfect input-state linearization.

Fig. 4. The Popov curve with a delay injection attack of T = 0.80 s for
δ = 0.1. The critical pivot point −1+ 0j of the Popov line is marked red.

q22 = 0.10, while the control signal penalty was q2 = 1.00.
This resulted in KP = 1.91 and TI = 3.16 s. A disturbance
d(t) = −1.0 m/s2 starts affecting the system at t = 75 s.
Tustin’s approximation, [17], was used to discretize the outer
loop with a sampling period of Ts = 0.001 s. The nonlinear
input-state linearization loop was discretized with the Euler
method.

Without any attack, and with perfect linearization as stated
by A1, the performance of Fig. 3 was obtained.

A delay attack occurring after 65 s, injecting a delay of
T = 0.80 s was then simulated. As seen by Fig. 4, there
is no longer any possibility to draw a Popov line through
−1 + 0j so that the entire Popov curve is to the right of
the line, hence the Popov criterion does not imply stability.
As shown by Fig. 5 the conclusion of the Popov criterion is
correct. The instability quickly becomes disturbing.

The performance of the feedback linearization was robust,
with very similar behaviour as in Fig. 3 and Fig. 5, when
kθS

varied and was overestimated up to a factor of 4.



Fig. 5. The effect of the delay attack, injecting T = 0.80 s at 65 s.

Fig. 6. Open loop delay attack at t = 6000 s. The bottom figure shows
the manual control blue and the disturbance red.

E. Early Detection with Recursive Identification

The control system of Fig. 1 was then simulated in
open loop. The zero mean Gaussian disturbance d(t) had
a standard deviation of 0.01 m/s2. A delay injection attack
was executed at t = 6000 s, during open loop operation.
The simulated velocity with and without delay, the manual
control and the disturbance are depicted in Fig. 6. The attack
remains very well disguised. The curves of the top figure
coincide and it is not possible to notice any effect of the
attack.

The algorithm of [26], set for tracking, was used for delay
injection attack detection. The algorithm used the control
signal u1(t) and the potentially delayed velocity y(t − T ),
measured at the left open loop/closed loop switch of Fig. 1.

Guided by the physical model behind the control loop
the following model structure was selected for recursive
identification, cf. (13)-(16)

f(x̂(t, θ̂S(t)),u(t), θ̂S(t))

= θ̂S,00(t)1 + θ̂S,01(t)u1(t) + θ̂S,20(t)x̂
2
1(t, θ̂S(t)), (46)

ŷ(t, θ̂T (t), θ̂S(t)) = x̂1(t− θ̂T (t), θ̂S(t)). (47)

Fig. 7. The parameter estimates of the algorithm of [26].

The parameter θ̂S,00(t) compensates for any biases. Note
that no term linear in x̂1(t, θ̂S(t)) was included. The reason
is that for small signal variations, the quadratic term would
behave as linear, thereby compromising observability. The
SW implementation of the algorithm, [27], used the tracking
gain µ0 = 1.0, the scale factor α = 10, the projection radius
1−κ = 0.9995, the delay range [0.0, 1.0] s, and the sampling
period TS = 0.10 s. The algorithm was initialized with
Λs(0) = 10 to handle large initial prediction errors. The
Hessian and the parameter vector were initialized by

Rs(0) =

(
0.10 0
0 1.00I3

)
, (48)

θ̂s(0) = (0.2000 0.0000 0.1000 − 0.0500)
T
. (49)

The time evolution of the parameter estimates of the re-
cursive algorithm are depicted in Fig. 7. The performance is
excellent. The algorithm immediately converges to a setting
where 0.00 < θ̂T (t) < 0.02 s. This estimate is retained
until the delay attack, when θ̂T (t) starts to increase, allowing
for delay change detection when t > 6300 s, as judged by
manual inspection of Fig. 7. Considering the variation of
the velocity of Fig. 6, the response is rapid. The parameters
describing the dynamics also converge rapidly, to the final
re-scaled estimate

θ̂S(10000) = (−0.00730 0.97290 − 0.00080)
T
. (50)

This can be compared to the true parameter vector

θ̂0
S = (0.00000 1.00000 − 0.00083)

T
. (51)

VI. CONCLUSIONS

The paper developed a method to detect delay injection
into nonlinear control systems, subject to input-state feed-
back linearization. The paper also analysed the L2-stability
of the system, thereby addressing the robustness of the lin-
earized feedback loop against delay attacks. The detection of
the delay attack was performed by a recursive identification
algorithm, based on a nonlinear state space model with



output delay. A distinctive advantage is that the method is
applicable also in cases where the system dynamics is not
completely known. The identified dynamics can also be used
for controller tuning. The numerical evaluation performed
for a nonlinear automotive cruise controller showed that the
proposed recursive identification algorithm is able to detect
a well disguised delay attack, and do so rapidly.

VII. APPENDIX

Lp Stability Definitions

D1) For all p ∈ [1,∞), Lp[0,∞) denotes the set of all
measurable functions f(·) : [0,∞) → R, such that

∥f(·)∥pp =

∫ ∞

0

|f(t)|pdt <∞.

D2) The set of all measurable functions f(·) : [0,∞) → R,
such that their truncations

fŤ (t) =

{
f(t), 0 ≤ t ≤ Ť
0, t > Ť

∈ Lp[0,∞), ∀Ť ,

is denoted the extension Lpe[0,∞) of Lp[0,∞).
D3) The mapping A : Lpe → Lpe is Lp-stable if i) Af ∈ Lp

whenever f ∈ Lp, and ii) there exist finite constants l, c,
such that

∥Af∥p ≤ l∥f∥p + c, ∀f ∈ Lp.

D4) A denotes the set of generalized functions of the form

f(t) =

{
0, t < 0∑∞

i=0 fiδ(t− ti) + fa(t), t ≥ 0
,

where δ(·) is the unit delta distribution, ti are non-
negative constant delays, fa(t) is measurable and∑∞

i=0 |fi| <∞,
∫∞
0

|fa(t)|dt <∞.

D5) Â denotes the set of all function f̂ : C+ → C that are
Laplace transforms of elements of A.
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