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Abstract—This article investigates the design of online stealthy attacks
with the aim of moving the system’s state to a desired target. Different
from the design of offline attacks, which is only based on the system’s
model, to design the online attack, the attacker also estimates the
system’s state with the intercepted data at each instant and computes the
optimal attack accordingly. To ensure stealthiness, the Kullback-Leibler
divergence between the innovations with and without attacks at each
instant should be smaller than a threshold. We show that the attacker
should solve a convex optimization problem at each instant to compute the
mean and covariance of the attack. The feasibility of the attack policy
is also discussed. Furthermore, for the strictly stealthy case with zero
threshold, the analytic expression of the unique optimal attack is given.
Finally, a numerical example of the longitudinal flight control system is
adopted to illustrate the effectiveness of the proposed attack.

Index Terms—Security of the Cyber-physical systems (CPSs),
Kullback-Leibler divergence (KLD), online stealthy attack

I. INTRODUCTION

ADVANCES in communications boost the applications of cyber-
physical system (CPSs), which integrate the communication,

computation, and control technologies [1] [2]. However, the extensive
employment of open communication networks makes CPSs vulnera-
ble to various malicious attacks on the cyber layer, which can lead
to remarkable economy losses. Hence, the security of the CPSs has
drawn significant attention from the scientific community in recent
years [3]–[6].

To guarantee the safety of CPSs, passive [7] and active [8] attack
detectors are designed to judge whether the system is attacked.
Once an attack is detected, one may design filters or controllers to
mitigate its effect. However, some attackers with enough resources
can carefully design attacks so that they can avoid being detected.
Hence, to study the vulnerability of CPSs, researchers study designing
stealthy attacks and evaluate how much destruction these attacks
make.

Many works are devoted to the stealthy attacks against a specific
type of detector, e.g., the χ2 detector [9], the CUSUM detector [10],
the MEWMA detector [11], the SPRT detector [12]. Furthermore,
since systems may not just equip one attack detector, stealthy attacks
with respect to arbitrary detectors attract much interest. The existence

This work is supported by the National Natural Science Foundation of
China (no. 61873034), the Swedish Research Council (no. 2018-04396), the
Swedish Foundation for Strategic Research, the Joint Open Fundation of
the State Key Laboratory of Synthetical Automation for Process Industries
(no. 2021-KF-21-05), the Natural Science Foundation of Beijing Municipality
(no. 4182057), and the Open Subject of Beijing Intelligent Logistics System
Collaborative Innovation Center (no. BILSCIC-2019KF-13).(Corresponding
author: Kun Liu).

Qirui Zhang, Kun Liu, Senchun Chai, and Yuanqing Xia are with the
School of Automation, Beijing Institute of Technology, Beijing 100081, China.
E-mail: qiruizhang@cumt.edu.cn; kunliubit@bit.edu.cn; chaisc97@163.com;
xia yuanqing@bit.edu.cn
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of undetectable attack is analyzed in [13]. Specifically, the zero-
dynamic attack [14], which is designed according to the system’s
unstable poles and makes the output the same as the normal one, is
one kind of such attack. In [15], the stability of the system under the
undetectable attack is further studied. Moreover, the cases that the
attacker is only able to attack at most a certain number of sensors
and actuators are considered in [16] and [17], respectively.

A commonly adopted measure of the stealthiness for arbitrary
detectors is the Kullback-Leibler divergence (KLD). Generally, the
smaller the KLD between the innovations with and without attack is,
the more stealthy the attack is [18]. With the KLD as the constraint,
the optimal stealthy attacks are designed to degrade the system’s
estimate performance [19] and control performance [20]. In [18]–
[20], it is required that the KLD between the sequences of all the
innovations with and without attacks is smaller than a threshold. The
constraint that the KLD between the innovations with and without
attacks at each instant is used in [21], where an innovation-based
attack is designed to maximize the trace of the covariance of the
estimate error. The objective of reducing the linear quadratic Gaussian
control performance is further considered in [22] and the boundedness
and the approximation of the reachable set for the system under
stealthy attack is studied in [23].

It should be pointed out that the attacks designed in [18]–[20],
[22] are offline. That is, the attacker determines the distribution of
the attack will be used in the future according to the system model at
instant 0. In [21], although online attack is designed, it only considers
the attack which modifies the filter’s innovation with a specific linear
function.

In this article, we aim to design an online attack to move the
system’s state to a desired target while letting the KLD between the
innovations with and without attacks at each instant smaller than a
threshold. The design of the optimal online stealthy attack is based
on not only the system model, but also the input and output signals
intercepted at each instant. The main contributions of this article are
summarized as follows:

1) An algorithm, in which a convex optimization problem should be
solved at each instant, is provided to compute the optimal online
attack, and the algorithm is proved to be always recursively
feasible.

2) In particular, when the threshold of the KLD equals to zero,
which forces the attack to be strictly stealthy, it is shown that
the optimal attack is unique and the analytical expression of the
optimal strictly stealthy attack is given.

The rest of the article is organized as follows: Section II presents
the problem formulation. In Section III, we design the optimal strictly
stealthy attack and the optimal attack that is not strictly stealthy.
Section IV presents a simulation to illustrate the effectiveness of the
stealthy attack. Section V concludes this article.

Notations: Throughout this article, let Rn be the n-dimensional
Euclidean space and In be the identity matrix of order n. The
expectation of the stochastic variable x is denoted as E{x} and
x ∼ N (a,Σ) means the vector x satisfies a Gaussian distribution
with mean a and covariance matrix Σ (when Σ = 0, it means
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Fig. 1. Online stealthy deception attack design against CPSs

x = a). For any matrix A, A† is the Moore-Penrose pseudoinverse,
Null(A) stands for the null space of A, the column space of A
is denoted by Span(A), and Tr(A) is used to denote the trace of
A when A is a square matrix. The notation diag(A,B) stands for
the block diagonal matrix with matrices A,B in the diagonal. For
any symmetric matrix P , the notation P ≻ 0 (P ⪰ 0) means that
P is positive definite (semi-definite) and ||x||2P = xTPx, where x
is a vector with appropriate dimension. For a sequence of vectors
xi ∈ Rn, i = a, a + 1, . . . , b, the vector xb

a ∈ R(b−a+1)n equals
to

[
xT
a xT

a+1 · · · xT
b

]T .

II. PROBLEM FORMULATION

In this section, we present the system model and describe the
attacker’s objective.

A. System model

Consider the system shown in Fig.1. The dynamics of the plant
are given by

xk+1 = Axk +Buk +Dua
k + wk, (1)

yk = Cxk + Eya
k + vk, (2)

where xk ∈ Rn is the system state, uk ∈ Rl is the control input,
ua
k ∈ Rp is the actuator attack, ya

k ∈ Rq is the sensor attack,
wk ∈ Rn is the process noise, yk ∈ Rm is the sensor output,
and vk ∈ Rm is the measurement noise. The process noise wk has
independent identical distribution (i.i.d.) N (0,Σw) with Σw ≻ 0,
the measurement noise vk has i.i.d. N (0,Σv) with Σv ≻ 0 and
wk is independent of vk. The matrices A, B, C, D, and E have
appropriate dimensions. Both D and E have full column rank. The
pair (C,A) is observable, and the pair (A,B) is controllable. The
system runs without knowing the attack signal. A Kalman filter is
used to estimate the state. It is well-known that the Kalman filter
converges exponentially fast from any initial condition [24]. Hence,
without loss of generality we assume that the filter starts from the
steady state, which makes the filter gain fixed, i.e., the Kalman filter
has the form

x̂k = x̂−
k +K(yk − Cx̂−

k ), (3)

x̂−
k = Ax̂k−1 +Buk−1, (4)

where x̂k and x̂−
k are the estimates of xk given all the information up

to instants k and k−1, respectively, K = PCT (CPCT +Σv)
−1 and

P = APAT +Σw−APCT (CPCT +Σv)
−1CPAT . It is assumed

that A−KCA is stable.
Define the estimation error and the innovation of the Kalman filter

as ek = xk − x̂k and rk = yk − Cx̂−
k , respectively. The attack

detector uses rk to judge whether the system is attacked according
to a certain decision rule, e.g., [9]–[12].

Let ēk and r̄k be the estimate error and the innovation of the
Kalman filter when the system is under no attack (i.e., ua

i−1 = 0,

ya
i = 0, i ≤ k), respectively, then r̄k has i.i.d. N (0, S) with S =

CPCT +Σv .
In addition, the system uses a state feedback controller

uk = Lx̂k, (5)

where L is the controller gain such that A+BL is stable.

B. Stealthy attack

For the attacker, we assume that it has full knowledge of the
system, i.e., the attacker knows the matrices A, B, C, D, E, L,
Σw, and Σv . This assumption is the worst case for the system and
is also necessary for the attacker to carefully design stealthy attacks.
Hence, it is commonly used in the existing literature [18], [20]–[22].
Moreover, the attacker may acquire the parameters of the system from
specific physical problems or by system identification techniques
[25].

Let ξk =
[
(ua

k)
T (ya

k+1)
T
]T . Without loss of generality, the

attack ξk is assumed to start at instant 0 and end at instant N . The
attacker intercepts the system’s input and output. The information
obtained by the attacker at instant 0 is I0 = {u−1

−∞, y0
−∞} and

at instant k ≥ 1 is Ik = {uk−1
−∞ , yk

−∞, ξk−1
0 }. The attack policy

is designed based on the information Ik, i.e., ξk = F(Ik). The
attacker’s goal is to find the optimal attack policy to make the
system’s state approach a certain target x∗ while being stealthy.

With information Ik, the attacker can give another estimate of the
system, defined by x̃k. The filter performed by the attacker has the
following form:

x̃k = x̃−
k +K(yk − Eya

k − Cx̃−
k ), (6)

x̃−
k = Ax̃k−1 +Buk−1 +Dua

k−1. (7)

Since x̃k − x̂k converges to 0 as k approaches 0 from −∞, we
have x̃0 = x̂0. Define the the innovation of filter (6) and (7) by
r̃k = yk − Eya

k − Cx̃−
k . It can be easily proved that r̃k = r̄k for

k ≥ 0.
Next, we introduce the measure of stealthiness. The KLD, which

is nonnegative and reflects the difference between two distributions,
is widely used in the detection theory as mentioned in Section I. The
definition of the KLD is given as follows:

Definition 1. (KLD) [26] Let x and y be two random vectors
with probability density functions fx and fy , respectively. The KLD
between x and y is

D(x||y) =
∫
{ζ|fx(ζ)>0}

fx(ζ) log
fx(ζ)

fy(ζ)
dζ. (8)

The KLD between filter’s innovations with and without attacks
from instants 1 to N + 1, i.e., D(rN+1

1 ||r̄N+1
1 ), is usually adopted

to describe the stealthiness of the attack [18]–[20]. By the Chernoff-
Stein Lemma [27], the value of D(rN+1

1 ||r̄N+1
1 ) is related to the

false alarm rate (i.e., the probability that the detector alarms but
there is no attack) of any detector which uses the innovation rN+1

1

to judge whether there is an attack from instants 0 to N . However,
most existing detectors (see [7] [8] and the references therein )
judge whether the system is attacked at each instant. Hence, using
D(rN+1

1 ||r̄N+1
1 ) to describe the stealthiness of the attacks against

these detectors is not suitable.
Following [21]–[23], we adopt D(ri||r̄i), i = 1, . . . , N + 1, as

the measure of stealthiness. To be stealthy, the attacker should let
D(ri||r̄i) ≤ δi, where δi ≥ 0, i = 1, . . . , N +1, are the thresholds.

Based on the above analysis, we consider the following optimiza-
tion problem and find the optimal solution ξ∗k = F∗(Ik), k = 0,
. . . , N .
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Problem 1.

min
F(I0),...,F(IN )

J = E

{
N+1∑
i=1

||xi − x∗||2Qi

}
,

s.t. D(ri||r̄i) ≤ δi, i = 1, . . . , N + 1,

where Qi ≻ 0, i = 1, . . . , N + 1, are the weight matrices.

Remark 1. The optimal offline attack policies are designed in
[18]–[20], where D(rN+1

1 ||r̄N+1
1 ) is used. By the chain rule

of the KLD [27], we have D(rk+1
1 ||r̄k+1

1 ) = D(r1||r̄1) +∑k+1
i=2 E{D(ri||r̄i|ri−1

1 )}, where D(ri||r̄i|ri−1
1 ) is the conditional

KLD between ri and r̄i given the condition ri−1
1 , and the expectation

is taken over ri−1
1 . However, ri−1

1 becomes a known constant at
instant i. Hence, using D(rN+1

1 ||r̄N+1
1 ) is also not appropriate when

we target to design an online attack policy, i.e., ξk is computed
according to Ik.

III. MAIN RESULTS

In this section, we will provide an algorithm that solves Problem 1
and further give the analytical solution for the case that the attack is
strictly stealthy, i.e., δi = 0, i = 1, . . . , N + 1.

Combining dynamics (1), (2), and filter (3), (4), we get

rk+1 = CAek +Gξk + Cwk + vk+1

= C(Aēk + wk) + vk+1 + CA∆ek +Gξk

= r̄k+1 + CA∆ek +Gξk, (9)

where G =
[
CD E

]
and ∆ek = ek − ēk is the estimate error

induced by the attack.
Moreover, we also have

ek+1 = Āek + B̄ξk + (In −KC)wk −Kvk+1,

where Ā = A−KCA and B̄ =
[
D −KCD −KE

]
.

Hence, ∆ek satisfies the following equation:

∆ek+1 = Ā∆ek + B̄ξk. (10)

Since the attack starts at instant 0, we have ∆e0 = 0.
Let zk =

[
x̃T
k x̂T

k ∆eTk (x∗)T
]T . It follows from (3)-(7),

(9), (10), and r̃k = r̄k that

zk+1 = Ãzk + B̃ξk +Hr̃k+1, (11)

where Ã =


A BL 0 0
0 A+BL KCA 0
0 0 Ā 0
0 0 0 In

, H =


K
K
0
0

, and B̃ =


D 0

KCD KE
D −KCD −KE

0 0

.

Remark 2. In (11), r̃k+1 ∼ N (0, S) can be obtained
from the attacker’s filter (6) and (7). The initial state z0 =[
x̃T
0 x̃T

0 0 (x∗)T
]T

is also known to the attacker. Hence, the
attacker can run (11) with its own data, which means that zk is fully
accessible to the attacker.

Define F1 =
[
In 0 0 −In

]
and F2 =

[
0 0 In 0

]
, then

we have x̃k−x∗ = F1zk and ∆ek = F2zk. It is well-known that xk−
x̃k ∼ N (0, (In −KC)P ) and is orthogonal to x̃k [24]. Therefore,
we have

J = E

{
N+1∑
i=1

[
Tr((In −KC)PQi) + ||F1zi||2Qi

]}
. (12)

Then, the objective function in Problem 1 can be replaced by
E{

∑N+1
i=1 ||F1zi||2Qi

}.
Following [18]–[23], we can prove that the optimal attack should

have Gaussian distribution, i.e., ξk ∼ N (ηk,Γk) with mean ηk ∈
Rp+q and covariance Γk ⪰ 0, k = 0, . . . , N . Hence, to obtain the
optimal attack, we only need to calculate ηk and Γk.

A. Optimal Stealthy Attack

In this subsection, we will give the solution of Problem 1. To do
so, we first define the following optimization problem:

Problem 2.

min
ΩN

k

J̃k = E
zN+1
k+1

{
N+1∑
i=k+1

||F1zi||2Qi
|Ik

}
,

s.t. D(ri||r̄i|Ik) ≤ δi, i = k + 1, . . . , N + 1,

where ΩN
k = {ηk,Γk, . . . , ηN ,ΓN}.

Problem 2 aims to find the optimal stealthy attack to minimize J̃k

when Ik (or zk, equivalently) is known. The relationship between
Problems 1 and 2 will be discussed later.

Since the optimal attack is Gaussian, we shall express the constraint
and the objective function of Problem 2 in terms of the mean ηk, . . . ,
ηN , and the covariance Γk, . . . , ΓN of the attack.

In (9), note that r̄k+1 is the innovation at instant k+1 when there
is no attack, and the design of attack ξk is based on the information
Ik at instant k. Hence, r̄k+1 is independent of ξk.

Given the condition Ik, the term ∆ek is known. Then, according
to (9) and (10), we have

ri|Ik ∼ N (βk,i, Sk,i),

where

βk,i = CAĀi−k−1∆ek +

i−1∑
j=k

Ḡj,iηj ,

Sk,i = S +

i−1∑
j=k

Ḡj,iΓjḠ
T
j,i,

Ḡi−1,i = G,

Ḡj,i = CAĀi−2−jB̄, k ≤ j ≤ i− 2.

Recall that r̄k is also Gaussian. Hence, it follows that

D(ri||r̄i|Ik) =
1

2

[
Tr(S−1Sk,i) + log

|S|
|Sk,i|

−m

+βT
k,iS

−1βk,i

]
. (13)

Let

Ak =
[
ÃT (Ã2)T · · · (ÃN+1−k)T

]T
,

Bk =


B̃ 0 · · · 0

ÃB̃ B̃ · · · 0
...

...
. . .

...
ÃN−kB̃ ÃN−1−kB̃ · · · B̃

 ,

Hk =


H 0 · · · 0

ÃH H · · · 0
...

...
. . .

...
ÃN−kH ÃN−1−kH · · · H

 ,

then, from (11), one has

zN+1
k+1 = Akzk + Bkξ

N
k +Hkr̃

N+1
k+1 .
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Therefore, the objective function of Problem 2 can be written as

J̃k = Tr(Q̃k(S̃k +Akzkz
T
k AT

k + BkΓ̃kBT
k ))

+2zTk AT
k Q̃kBkη

N
k + ||Bkη

N
k ||2Q̃k

, (14)

where

S̃k = Hkdiag(S, . . . , S)HT
k ,

Γ̃k = diag(Γk, . . . ,ΓN ),

Q̃k = diag(FT
1 Qk+1F1, . . . , F

T
1 QN+1F1).

In (13) and (14), note that the quadratic forms βT
k,iS

−1βk,i and
||Bkη

N
k ||2Q̃k

as well as the function − log |Sk,i| are convex [28].
Moreover, other terms are linear functions of ηk, Γk, . . . , ηN , ΓN .
Hence, Problem 2 is convex and can be effectively solved by the
CVX toolbox [29].

Suppose the solution of Problem 2 at instant k is
{ηk,k,Γk,k, . . . , ηk,N ,Γk,N}. Then, we can present the algorithm
that gives the optimal solution ξ∗k = F∗(Ik) of Problem 1 as
follows:

Algorithm 1 Optimal attack policy F∗(Ik)
1: I0 = {u−1

−∞, y0
−∞} and k = 0

2: while 0 ≤ k ≤ N do
3: Calculate zk from Ik and solve Problem 2
4: Attack the system with the optimal attack ξ∗k ∼ N (ηk,k,Γk,k)
5: k ← k + 1
6: Ik = {Ik−1, uk−1, yk, ξk−1}
7: end while

Next, we analyze the property of the covariances Γk,k, . . . , Γk,N

solved from Problem 2 at instant k, which will be used to prove
that Algorithm 1 is always recursively feasible, i.e., at each instant,
Problem 2 always has at least one solution.

Lemma 1. The covariances Γk,k, . . . , Γk,N satisfy

Ḡj,iΓk,jḠ
T
j,i = 0, i = k + 1, . . . , N + 1, j = k, . . . , i− 1, (15)

Tr(Q̃kBkdiag(Γk,k, . . . ,Γk,N )BT
k ) = 0. (16)

Proof. In (13), note that Tr(S−1Sk,i) + log |S|
|Sk,i|

≥ m, where
the equality holds if and only if Sk,i = S, which means (13) is
minimized when

∑i−1
j=k Ḡj,iΓjḠ

T
j,i = 0, i = k + 1, . . . , N + 1.

Since Ḡj,iΓjḠ
T
j,i ⪰ 0, we can obtain (15).

In (14), since Q̃k ⪰ 0, the term Tr(Q̃kBkΓ̃kBT
k ) is minimized

when (16) is satisfied. Note that (15) and (16) can be satisfied
simultaneously when Γk,k = · · · = Γk,N = 0. Hence, the proof
is completed,

Now, we are ready to study the feasibility of Algorithm 1.

Theorem 1. Algorithm 1 is always recursively feasible.

Proof. Note that ∆e0 = 0. Hence, Algorithm 1 is feasible at instant
0 with ΩN

0 = {0, 0, . . . , 0, 0}.
Suppose at instant k − 1, Algorithm 1 is feasible and the system

is attacked with the optimal attack ξ∗k−1 ∼ N (ηk−1,k−1,Γk−1,k−1).
By (9), (10) and (15), for i = k + 1, . . . , N + 1, we have

ri = r̄i + CAĀi−k−1∆ek +

i−1∑
j=k

Ḡj,iξj ,

where

CAĀi−k−1∆ek = CAĀi−k−1(Ā∆ek−1 + B̄ξ∗k−1)

= CAĀi−k∆ek−1 + Ḡk−1,iξ
∗
k−1

= CAĀi−k∆ek−1 + Ḡk−1,iηk−1,k−1.

Since {ηk−1,k−1,Γk−1,k−1, . . . , ηk−1,N ,Γk−1,N} is the solution of
Problem 2 at instant k − 1, it follows from (15) that

Ḡj,iΓk−1,jḠ
T
j,i = 0, i = k, . . . , N + 1, j = k − 1, . . . , i− 1. (17)

In (13), replace k by k−1 and let ηj = ηk−1,j , Γj = Γk−1,j . Then,
by (17), for i = k, . . . , N + 1, one has

∥CAĀi−k∆ek−1 +Gk−1,iηk−1,k−1 +

i−1∑
j=k

Ḡj,iηk−1,j∥2S−1 ≤ 2δi.

Hence, at instant k, the constraint of Problem 2 D(ri||r̄i|Ik) ≤ δi
can be satisfied with ΩN

k = {ηk−1,k, 0, . . . , ηk−1,N , 0}, which means
Algorithm 1 is feasible at instant k. Therefore, by induction, the proof
is completed.

Finally, with the following lemma, we prove that the optimal attack
is given in Algorithm 1.

Lemma 2. [24] Let g(z, ξ) be a function such that, for any z,
minξ∈Ξ g(z, ξ) exists and Ξ is a set of functions such that for
every ξ ∈ Ξ, the expectation Ez{g(z, ξ)} exists. Then, we have
minξ∈Ξ Ez{g(z, ξ)} = Ez{minξ∈Ξ g(z, ξ)}.

Theorem 2. Algorithm 1 provides the optimal attack that solves
Problem 1.

Proof. We resort to dynamic programming to solve Problem 1.
According to (11) and (12), the optimal cost function is given as

J∗
N = min

ηN ,ΓN

EzN+1{||F1zN+1||2QN+1
|IN},

s.t. D(rN+1||r̄N+1|IN ) ≤ δN+1,

J∗
k = min

ηk,Γk

Ezk+1{(||F1zk+1||2Qk+1
+ J∗

k+1)|Ik},

s.t. D(rk+1||r̄k+1|Ik) ≤ δk+1, k = 0, . . . , N − 1.

Hence, we only need to prove

J∗
k = min

ΩN
k

J̃k,

s.t. D(ri||r̄i|Ik) ≤ δi, i = k + 1, . . . , N + 1, (18)

for k = 0, . . . , N .
It is easy to show that (18) holds when k = N . Then, we suppose

(18) holds for instant k + 1 and prove it also holds for instant k.
The right-hand-side of (18) equals to

min
ηk,Γk

min
ΩN

k+1

Ezk+1EzN+1
k+2

{{
N+1∑
i=k+1

||F1zi||2Qi
|Ik

}}
,

s.t. D(ri||r̄i|Ik) ≤ δi, i = k + 1, . . . , N + 1.

We use Lemma 2 to exchange minΩN
k+1

and Ezk+1 . Note that

the minimization over ΩN
k+1 is a function of zk+1. Therefore, the

expectation over zN+1
k+2 is the conditional expectation given Ik+1.

Then, the-right-hand side of (18) becomes

min
ηk,Γk

Ezk+1{(||F1zk+1||2Qk+1
+ Ĵk+1)|Ik},

s.t. D(rk+1||r̄k+1|Ik) ≤ δk+1,

where

Ĵk+1 = min
ΩN

k+1

J̃k+1,

s.t. D(ri||r̄i|Ik+1) ≤ δi, i = k + 2, . . . , N + 1.

By the assumption of Ĵk+1 = J∗
k+1, we have (18) is true for

instant k. Hence, by induction, the proof is completed.

Remark 3. At instant k, Problem 2 has (p + q)(p + q + 3)(N −
k + 1)/2 scalar decision variables. Moreover, Algorithm 1 requires
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solving Problem 2 repeatedly. Hence, when N is large, Algorithm 1
is computationally expensive. To reduce the computational burden,
one can obtain a suboptimal attack by solving the following problem
with fewer variables instead of Problem 2 in Algorithm 1 at first few
instants:

min
Ωk+W

k

E
zN+1
k+1

{
N+1∑
i=k+1

||F1zi||2Qi
|Ik

}
,

s.t. D(ri||r̄i|Ik) ≤ δi, i = k + 1, . . . , N + 1,

ξNk+1 = 0,

where W ∈ [0, N − 1] is a time window.

B. Optimal Strictly Stealthy Attack

In this subsection, we further analyze the case of δi = 0, i = 1,
. . . , N +1, and give the analytical expression of the optimal strictly
stealthy attack, which requires much less computational cost than
Algorithm 1. By (15) and (16), one of the optimal covariances is 0.
Hence, to simplify the problem, we assume the attack is deterministic
(i.e., ξk = ηk, Γk = 0) and calculate ηk.

Before designing the optimal strictly stealthy attack, we first give
the lemma which characterizes the feasible set of the strictly stealthy
attack.

Lemma 3. When δi = 0, i = 1, . . . , N + 1, the attack should be
in the following set:

ηk ∈ {η|ῩkF2zk +Gkη = 0}, k = 0, . . . , N, (19)

where

ῩN = CA,GN = G,

Ῡk =

[
CA

Υk+1Ā

]
, Gk =

[
G

Υk+1B̄

]
, k = 0, . . . , N − 1,

Υk = ΨT
k Ψk −ΨT

k Φk(Φ
T
k Φk)

†ΦT
k Ψk,

Ψk =
[
(CA)T (CAĀ)T · · · (CAĀN−k)T

]T
,

k = 0, . . . , N,

ΦN = G,

Φk =


G 0 · · · 0

CAB̄ G · · · 0
...

...
. . .

...
CAĀN−k−1B̄ CAĀN−k−2B̄ · · · G

 ,

k = 0, . . . , N − 1.

Proof. From (9), to be strictly stealthy, ηk should satisfy

CA∆ek +Gηk = 0. (20)

When k = N , we can directly obtain (19) from (20). When k < N ,
ηk should not only satisfy (20), but also be chosen such that there
exists a strictly stealthy attack from instants k + 1 to N , i.e., there
exists an ηN

k+1 such that CA∆ei + Gηi = 0, i = k + 1, . . . , N .
Then, from (10), there exists an ηN

k+1 such that

Ψk+1∆ek+1 +Φk+1η
N
k+1 = 0, (21)

which is equivalent to

min
ηN
k+1

||Ψk+1∆ek+1 +Φk+1η
N
k+1||2In = ||∆ek+1||2Υk+1

= 0. (22)

Combining (10), (20) and (22), we can obtain (19) for k = 0, . . . ,
N − 1, which completes the proof.

It can be seen from Lemma 3 that (19) is satisfied when ηN
0 = 0.

However, ηN
0 = 0 does not have any influence on the system. Hence,

we give the necessary and sufficient condition for the existence of
nonzero ηN

0 in the following corollary.

Corollary 1. A nonzero ηN
0 exists if and only if G does not have

full column rank.

Proof. Recalling that ∆e0 = 0, it follows from (21) (by letting k =
−1) that the necessary and sufficient condition for the existence of
nonzero ηN

0 is that Φ0 does not have full column rank, which holds
if and only if G does not have full column rank (since Φ0 is a block
lower triangular matrix with G in the diagonal).

Since G ∈ Rm×(p+q), we can also obtain the following sufficient
condition:

Corollary 2. If p+ q > m, i.e., the dimension of ξk is larger than
that of yk, a nonzero ηN

0 exists.

We then give the lemma which will be used to derive the analytical
expression of the optimal strictly stealthy attack.

Lemma 4. Suppose γ is a known vector, then, for k = 0, . . . , N ,
the following equation

GTk B̃TQk+1B̃Gkα+ GTk B̃T γ = 0 (23)

with

Gk = Ip+q −G†
kGk, k = 0, . . . , N,

QN+1 = FT
1 QN+1F1,

Qk = FT
1 QkF1 + (Ā−G†

kῩkF2)
TQk+1(Ā−G†

kῩkF2)

−ΞT
k (GTk B̃TQk+1B̃Gk)†Ξk,

Ξk = GTk B̃TQk+1(Ã−G†
kῩkF2),

k = 1, . . . , N,

has at least one solution α.

Proof. We prove the solution exists by proving
Span(GTk B̃TQk+1B̃Gk) = Span(GTk B̃T ). Trivially, we have
Span(GTk B̃TQk+1B̃Gk) ⊂ Span(GTk B̃T ). Hence, we only need to
show Null(GTk B̃TQk+1B̃Gk) ⊂ Null(B̃Gk) by contradiction.

Suppose α ∈ Null(GTk B̃TQk+1B̃Gk) while α /∈ Null(B̃Gk).
Then, we have Gkα =

[
αT
1 αT

2

]T ̸= 0, where α1 ∈ Rp.
Furthermore, we have

GNGNα = CDα1 + Eα2,

GkGkα =

[
CDα1 + Eα2

Υk+1B̄Gkα

]
, k = 0, . . . , N − 1.

Note that E has full column rank. If α1 = 0, then CDα1 +
Eα2 ̸= 0 (since

[
αT
1 αT

2

]T ̸= 0), which contradicts the fact that
GkGk = 0. Hence, one has α1 ̸= 0.

Since Qk+1 ≻ 0 and D has full column rank, we have

αTGTk B̃TFT
1 Qk+1F1B̃Gkα = αT

1 D
TQk+1Dα1

> 0.

Moreover, it is easy to show that Qk+1 − FT
1 Qk+1F1 ⪰ 0. Then, it

follows that

αTGTk B̃TQk+1B̃Gkα > 0, (24)

which is contrary to the assumption of α ∈ Null(GTk B̃TQk+1B̃Gk).
Hence, we have Span(GTk B̃TQk+1B̃Gk) = Span(GTk B̃T ), which

completes the proof.

We finally give the lemma which will be used to prove that the
optimal strictly stealthy attack is unique.
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Lemma 5. Suppose α3 and α4 are two solutions of (23), then
Gkα3 = Gkα4.

Proof. If Gkα3 ̸= Gkα4, according to (24), we have
||Gk(α3 − α4)||2B̃TQk+1B̃

> 0, which contradicts the fact that

GTk B̃TQk+1B̃Gkα3 = −GTk B̃T γ = GTk B̃TQk+1B̃Gkα4. Hence,
the proof is completed.

Now, we are ready to design the optimal strictly stealthy attack.

Theorem 3. The optimal attack policy F∗(Ik) that solves Problem 1
with δi = 0, i = 1, . . . , N + 1, is ξ∗k = η∗

k , where

η∗
k = −G†

kῩkF2zk − Gk(GTk B̃TQk+1B̃Gk)†Ξkzk,

k = 0, . . . , N, (25)

with Gk, Ῡk defined in Lemma 3 and Gk, Qk+1, Ξk defined in
Lemma 4.

Proof. Similar to the proof of Theorem 2, the optimal cost function
is given as:

J∗
N = min

ηN
E{||F1zN+1||2QN+1

|IN},

s.t. ῩNF2zN +GNηN = 0, (26)

J∗
k = min

ηk
E{(||F1zk+1||2Qk+1

+ J∗
k+1)|Ik},

s.t. ῩkF2zk +Gkηk = 0, k = 0, . . . , N − 1. (27)

We begin by finding the optimal attack at instant N . By (26), we
have η∗

N = −G†
N ῩNF2zN + GNc∗, where c∗ satisfies

GTN B̃TQN+1(ÃzN + B̃(−G†
N ῩNF2zN + GNc∗)) = 0. (28)

It follows from Lemma 4 that the solution of (28) exists. It is easy
to get one solution

c∗ = −(GTN B̃TQN+1B̃GN )†ΞNzN .

Hence, the optimal strictly stealthy attack (25) with k = N can
be obtained. Note that, by Lemma 5, all the solutions of (28) lead
to the same GNc∗. Therefore, the optimal strictly stealthy attack is
unique and

J∗
N = zTN [(Ā−G†

N ῩNF2)
TQN+1(Ā−G†

N ῩNF2)

−ΞT
N (GTN B̃TQN+1B̃GN )†ΞN ]zN +Tr(QN+1H

TSH).

Furthermore, in (27), let k = N − 1 and substitute J∗
N into (27).

Then, we have

J∗
N−1 = min

ηN−1

E{(||zN ||2QN
+Tr(QN+1H

TSH))|IN−1},

s.t. ῩN−1F2zN−1 +GN−1ηN−1 = 0.

Note that Tr(QN+1H
TSH) is a constant. Following the same

method as that used to find η∗
N , we can get η∗

N−1.
Repeating the dynamic programming procedure for k = N − 2,

. . . , 0, we can obtain that the optimal attack has the form of (25)
and is unique. The proof is completed.

Remark 4. It can be seen that the optimal strictly stealthy attack
is a state feedback of zk, which can be calculated online by the
attacker based on the information Ik (see Remark 2). Moreover, it
is easy to find from (25) that when Gk has full column rank for all
k, then η∗

k = 0. This coincides with the discussion in Corollary 1,

since GN = G and Gk =

[
G

Υk+1B̄

]
, k = 0, . . . , N − 1.
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Fig. 2. The pitch angles under optimal strictly stealthy attack, a random
generated strictly stealthy attack and no attack

IV. NUMERICAL EXAMPLE

In this section, the example of a simplified longitudinal flight
control system [30] is given to illustrate the effectiveness of the
proposed attack.

We use the linearized discrete-time model, where the state xk

represents the pitch angle, the pitch rate and the velocity of the flight.
The parameters of system (1) and (2) are given by

A =

0.9944 −0.1203 −0.4302
0.0017 0.9902 −0.0747

0 0.8187 0

 , B =

 0.4252
−0.0082
0.1813

 ,

C = E = I3, D = B, Σw = Σv = 0.001I3.
The controller gain is chosen to be

L =

 0.6311 −0.0136 −0.0239
−0.0136 0.5846 0.1287
−0.0239 0.1287 0.2876

 .

Moreover, the initial state is assumed to be x0 =
[
0 0 0

]T .
The attacker’s goal is to move the state of the flight to x∗ =[

2 0 0
]T . The time horizon in Problem 1 is N = 19 and the

weight matrices are Qi = I3, i = 1, . . . , 20.
a) Strictly stealthy attack : Let E = I3, meaning that all

sensors can be corrupted. According to Corollary 1, a nonzero strictly
stealthy attack exists since G =

[
CD E

]
does not have full

column rank. The pitch angles of the flight under optimal strictly
stealthy attack (25), under a randomly generated strictly stealthy
attack ξ′k = −G†

kCAF2zk +Gkck with ck ∼ N (0, 0.1I4) and under
no attack are shown in Fig.2, which indicates that under the attack
(25), the system’s state can reach x∗.

b) Non-strictly stealthy attack : When E equals to[
1 0 0
0 1 0

]T

(i.e., the last sensor cannot be corrupted), the

nonzero strictly stealthy attack does not exist. We choose the
thresholds in Problem 1 to be δk = 10, k = 1, . . . , 20. The
pitch angles of the flight and the values of D(rk||r̄k) under
optimal stealthy attack calculated by Algorithm 1, under a randomly
generated attack ξ′k ∼ N (ϵkηk,k, ϵ

2
kΓk,k) with ϵk ∈ (0, 1) and

under no attack are given in Fig.3 and Fig.4, respectively. Fig.3 and
Fig.4 show that the attack given in Algorithm 1 is stealthy and can
effectively make the system reach the target state. Fig. 5 presents
the value of

∑N+1
i=1 ||xi − x∗||2Qi

with different δk. It is observed
that with larger δk, the average distance between the state and the
target is smaller.
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Fig. 3. The pitch angles under optimal stealthy attack with δk = 10, a
random generated attack and no attack
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Fig. 4. The values of D(rk||r̄k) under optimal stealthy attack with δk = 10,
a random generated attack and no attack
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i=1 ||xi − x∗||2Qi
with different δk
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Fig. 6. Comparison among different attack strategies

Finally, we compare Algorithm 1 with two attack strategies in
Fig. 6. The first one is an offline attack, i.e., the attack ξN0 obtained
by solving Problem 2 for k = 0. It is shown that the offline attack and
the attack computed by Algorithm 1 make the state reach the target al-
most simultaneously. However, after instant 12, the pitch angle under
the offline attack deviates more far from 2 due to the influence of the
noise. The second one is the optimal stealthy attack with constraint in
Problem 1 changed by D(rN+1

1 ||r̄N+1
1 ) ≤

∑N+1
k=1 δk. Although this

attack is also computed offline (as discussed in Remark 1), it drives
the state to the target more quickly than our proposed attack, which
is because the constraint used in Problem 1 restricts the stealthiness
of the attack for each instant, not a period of time.

V. CONCLUSION

In this article, we have studied the design of online KLD-based
stealthy attack against CPSs for two cases. We have shown that the
optimal attack is a solution of a convex optimization problem that
should be solved by the attacker at each instant. The feasibility of
the attack policy has also been discussed. When the threshold equals
to zero, we have proved there always exists a unique optimal strictly
stealthy attack, which is a state feedback of an augmented system run
by the attacker. An example of a simplified longitudinal flight control
system has been presented to show the effect of the attack. Future
works may involve expanding the results to large-scale systems.
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